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Primer
This talk is mainly based on the following paper: 

Minimal XOR Circuits: The One True Shape is a Binary Tree

Submitted to CCC’24 & Draft of the Journal Version available here:

https://mcsp.work/opt-xor-shape.pdf 
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https://mcsp.work/opt-xor-shape.pdf
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● What are Circuits?

● Measuring Circuit Complexity

● Research Questions

● Our Motivation & Result

● Connection with Prior Work

● Does counting NOT-gates matter?



What are Circuits?
Circuits  model the computation of Boolean 
functions on fixed input length by acyclic wires 
between “logical gates”, i.e. Directed Acyclic 
Graphs (DAGs).

● There is 1 or multiple sources (variables) 
and exactly 1 sink (output),

● Each internal node including the sink are 
labeled with logical operations.
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∨ ∧

¬
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What are Circuits?
● In our work, we consider the DeMorgan basis  = {∧, ∨, ¬}

∧ ∨ ¬

● We allow all types of gates to have unbounded  fan-out.
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●  ∧-gates and ∨-gates have fan-in 2, and ¬-gates have fan-in 1.

basis = a finite 
set of logical 

gates.



Measuring Circuit Complexity
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● Measurements of Circuit Complexity  of a Boolean function f, given a basis B
○ count the number of gates or wires required to construct a circuit for f,

○ compute the circuit-depth, i.e. the longest path from a variable to the output.

● For our work, B = {∧, ∨, ¬}

○ The Circuit Complexity (CC) is the number of ∧-gates and ∨-gates, we refer them 
as the “costly ” gates.

○  ¬-gates do not count towards the CC.

● For the rest of the talk, we consider normalized circuits  (i.e. no double ¬). 



Measuring Circuit Complexity
● A warm-up example: 

XOR2(x1, x2) = (x1 ∨ x2) ∧ ¬(x1 ∧ x2)

CC(XOR2) = 3

∨ ∧

¬

x1 x2

∧

This circuit is optimal  under our measurement!
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use the least  
number of 
costly gates



Measuring Circuit Complexity
● A warm-up example: 

XOR2(x1, x2) = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

CC(XOR2) = 3

∨ ∧

¬

x1 x2

∧

¬

This circuit is also optimal  under our 
complexity measurement!

But when ¬-gates count toward the complexity, 
this circuit is no longer optimal!
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Research Questions
The existential question: Do functions that require “large circuits” exist?  

Solved by Shannon who showed that almost all Boolean functions require circuits of 
size Ω(2n/n) [Sha 49]

But can we even 
extract the identity 

of just ONE of 
such hard 
functions?

: easy functions

: hard functions
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Research Questions

What do we know so far about MCSP?

● MCSP is in NP.
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The algorithmic question: The Minimum Circuit Size Problem (MCSP)

● Input: an n-input Boolean function f as a 2n-bit truth table, an integer s
● Question: does there exist a DeMorgan circuit with at most s gates that computes f ?

● That’s pretty much it… 

● Whether it is NP-complete is a major open problem!

● Many variants of MCSP are NP-complete! [Mas 79, HOS 18, ILO 20, Ila 20]



Research Questions

MCSP is NP-complete implies major complexity breakthrough!
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The algorithmic question: The Minimum Circuit Size Problem (MCSP)

● Input: an n-input Boolean function f as a 2n-bit truth table, an integer s
● Question: does there exist a DeMorgan circuit with at most s gates that computes f ?

e.g. the class EXP does not have small DeMorgan circuits! [KC 00, SS 20]



Research Questions
This work – The design question: given a Boolean function f, can we characterize every 
optimal circuit computing f?

For some functions, this is easy to answer! e.g. minimal circuits for n-bit OR/AND 
are simply trees of (n − 1) costly gates.

∨ ∨

x1 x2

∨

x3 x4

Ex: an optimal OR4 circuit
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Research Questions
This work – The design question: given a Boolean function f , can we characterize 
every optimal circuit computing f?

What about some slightly more complicated functions, e.g. XOR, the parity function?

● If parity-gates (e.g. ⊕) are allowed, then the optimal circuits computing XOR is 
similar to that of OR, a tree of (n - 1) ⊕-gates.

● So, given the DeMorgan Basis, would the “shape” of such circuits change 
significantly? 
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Research Questions
This work – The design question: given a Boolean function f , can we characterize 
every optimal circuit computing f?

What about some slightly more complicated functions, e.g. XOR, the parity function?
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● But most of all, why bother?

(source: imgflip)

?? 😀 ??



Our Motivation – Hardness of Partial MCSP

The Partial Minimum Circuit Size Problem (MCSP*)

● Input: an n-input Partial  Boolean function f as a 2n-bit truth table, an integer s
● Question: does there exist a DeMorgan circuit with at most  s gates that agrees 

with f on defined inputs ?
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Partial function f: {0, 1}n → {0, 1, *}, defined on a subset of inputs, i.e. return 0 or 1 
given strings in the subset, and return * on everything else.

Under the Exponential Time Hypothesis (ETH), Ilango showed hardness of Partial 
MCSP (a variant of MCSP for partial function) [Ila 20].



Our Motivation – Hardness of Partial MCSP
The Exponential Time Hypothesis (ETH):  3SAT cannot be solved in DTIME(2o(n)) 

Theorem  [Ila 20]: Assuming ETH, MCSP* ∉ P

Open Problem:  Assuming ETH, MCSP ∉ P

We will inspect 
this in a bit!
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Our Motivation – Hardness of Partial MCSP
The Exponential Time Hypothesis (ETH):  3SAT cannot be solved in DTIME(2o(n)) 

Theorem  [Ila 20]: Assuming ETH, MCSP* ∉ P

Summary of Ilango's Reduction:

An ETH-hard 
problem [LMS 18] OR-SEP* MCSP*

≤ ≤

what is this? 
17



Our Motivation – Hardness of Partial MCSP
Simple Extension: let f: {0, 1}n → {0, 1} be a Boolean function, then g: {0, 1}n x {0, 1}m → {0, 
1}  is said to be a Simple Extension of f if optimal circuits computing g can be obtained by 
adding exactly  m extra costly gates to optimal circuits computing f.
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∨

x1 x2

f(x) = (x1 ∨ x2) ∨ 
x3

g(x) = (x1 ∨ x2 ) ∨ (x3∨ 
x4)

∨

x3

∨

x1 x2

∨

x3

∨

x4

“splice” 1 
∨-gate and 1 

variable x4 into 
this wire 

optimal 
circuit for 

OR3

optimal 
circuit for 

OR4

Simple Extension



Our Motivation – Hardness of Partial MCSP

The f-Simple Extension Problem (f-SEP):

● Input: a Boolean function g: {0, 1}n x {0, 1}m → {0, 1} as a 2n+m-bit truth-table 
● Question: is g a Simple Extension of f: {0, 1}n → {0, 1} ?

Simple Extension: let f: {0, 1}n → {0, 1} be a Boolean function, then g: {0, 1}n x {0, 1}m → {0, 
1}  is said to be a Simple Extension of f if optimal circuits computing g can be obtained by 
adding exactly  m extra gates to optimal circuits computing f.

Fact:  f-SEP ≤ MCSP
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Fact:  f-SEP* ≤ MCSP*

extend to partial function

g: {0, 1}n x {0, 1}m → {0, 1, *}



Our Motivation – Hardness of Partial MCSP
The Exponential Time Hypothesis (ETH):  3SAT cannot be solved in DTIME(2o(n)) 

Theorem  [Ila 20]: Assuming ETH, MCSP* ∉ P

Summary of Ilango's Reduction:

An ETH-hard 
problem [LMS 18] OR-SEP* MCSP*

≤ ≤

f-SEP* ≤ MCSP* 
for any f

Heavily involves 
the structure of 
optimal OR-circuits 20



Our Motivation - Does The Framework Still Work for Total MCSP? 
The same framework does not hold  for proving hardness of (total) MCSP !

“the set of optimal OR-circuits is so well structured that OR-SEP ∈ P” 
Rahul Ilango, SIAM J. of Computing, 2022 
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Facts: 
● Optimal OR-circuits are Read-once Formulae.

● Simple Extension of a Read-once Formula is also a Read-once Formula.

● There exists poly-time algorithms that learn the exact identification of a 
given the truth-table of a read-once formula [AHK 93, BHH 95]. 



Our Motivation
Earlier, we asked Why care about characterizing optimal circuits?

“… the missing component in extending our results to 
MCSP is finding some function f whose optimal 
circuits we can characterize but are also sufficiently 
complex.”
Rahul Ilango, SIAM J. of Computing, 2022 
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(source: imgflip)

Now, we know Ilango’s framework does not hold for proving 
hardness of (total) MCSP ! 

Thus…



Our Result – Statement

Theorem:  Optimal (¬)XORn circuits over the DeMorgan basis partition into trees 
of (n - 1) (¬)XOR2 sub-circuits when ¬-gates are free.

Our work characterizes optimal circuits for the function f = XOR
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Visualization…

Opt XOR-Ckt  ≡

XOR2

XOR2 XOR2

oopsy… ��



Our Result – Visualization
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Our Result – Connection to Prior Work
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This structure for optimals circuits for XORn was already established by Kombarov. 

The reason is there are two issues: 

● Kombarov’s result counts ¬-gates towards the circuit complexity! [Kom 11]

● It seems plausible that the same result might not hold since ¬-gates are free to  
use.

But we can’t directly use this result to address Ilango’s question!



Does NOT-gate fit in with Simple Extension?

Observation:  the definition of Simple Extension is not compatible with counting 
¬-gates towards the CC

∨

x1 x2

want to “splice” 
the wire coming 

out of  x2 and add 
a ¬-gate
and x3

∨

x1
x2

¬

x3

but then where 
should x2 go 

to???

invariant: one 
extra variable, 
one extra gate!
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Basic 
Tools
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● XOR-function

● Gate Elimination Proof Framework

● Warm-up: Schnorr’s Lower-bound



The XOR-Function
For an n-bit string x ∈ {0, 1}n, n ≥ 2, we define XORn(x) as follows

● XORn(x) = 1 if an odd number of bits of x are 1, and

● XORn(x) = 0 otherwise

Fact 1  (XOR is Downward Self-Reducible (DSR)):  For any input x ∈ {0, 1}n, we have 
XORn(x1 … xn) = XORn-1(x1 … xn-1) ⊕ xn

Fact 2  (XOR is Read-twice): let C be an optimal circuit for  XORn, then every variable in C has fan-out 2. 
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The XOR-Function

Fact 3  (XOR is Fully Sensitive): for all i ∈ [n] and for all  assignments x = b, we have
XORn(b) ≠ XORn(b ⊕ ei)

29

b with the 
i-th bit 
flipped

For an n-bit string x ∈ {0, 1}n, n ≥ 2, we define XORn(x) as follows

● XORn(x) = 1 if an odd number of bits of x are 1, and

● XORn(x) = 0 otherwise



Gate Elimination (GE) – Definition
Let C be a circuit computing f: {0, 1}n → {0, 1}

For i ∈ [n] and b ∈ {0, 1}, we consider the 1-bit restriction xi ← b which sets the i-th 
variable xi to the constant b.

C’ = C|xi←b is the ≤ (n − 1)-ary circuit obtained from C as follows.

● substitute xi ←b for all inputs labeled by xi
● perform the following constant simplification rules  on sub-circuits of C 

whenever possible

two types: 
passing and 
fixing rules
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Gate Elimination (GE) – Rules
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Passing Rules:

∧

y x

∧

1 x

set y ← 1

x

the ∧-gate 

is eliminated  



Gate Elimination (GE) – Rules
Passing Rules:
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∧

1 x

x ∧

0

x

x

¬

Key Takeaway : the variable x is still relevant 
to the rest of the circuit!



Gate Elimination (GE) – Rules
Fixing Rules:
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∧

0 x

0 ∧

1

x

0

¬

Key Takeaway : the variable x may or may not 
be disconnected completely from the rest of 

the circuit!

more rules can 
be applied after 

this point 



Gate Elimination (GE) – Proof Framework

Task:  given a circuit C, show C has some property P
Framework:  Repeats the following proof by contradiction argument

1. Assume C has ¬P 

2. Select a variable xi and set xi ← b ∈ {0, 1} 

3. Apply the rules to simplify C to obtain a constant-free circuit C’ 

4. Argue that C’ has a critical property Q that implies a contradiction.
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Warm-up: Schnorr 3n - o(1) lower bound for XOR

Theorem  [Sch 73] : The optimal circuit size computing XORn under DeMorgan’s 
Basis, free ¬-gates, is at least 3(n - 1).

Proof Sketch:

● The key step is to use a Gate Elimination argument to show that some one-bit 
restriction eliminates at least 3 costly gates.

● Then, apply Fact 1 (XOR is DSR) to inductively argue for the desired lower-bound.

when ¬-gates count,
 CC(XORn) ≥ 4(n-1) 

[Red’kin 71]
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Warm-up: Schnorr 3n - o(1) lower bound for XOR

Proof:  Let C be a circuit computing XORn and let h be a bottom level costly gate  fed 
by two distinct variables xi and xj. 

Lemma: Let C be a circuit computing XORn, for n ≥ 2, then there exists one-bit 
restriction that eliminates at least 3 costly gates.

36

Note:  for simplicity, we will 
omit ¬-gates in diagramsWe want to prove the following two properties for C:

● P1= “xi is fed into another gate h’i ≠ h”

● P2 = “h’i is not the output gate”



Warm-up: Schnorr 3n - o(1) lower bound for XOR

Proof:  Assume C has ¬P1, then there 

exists an assignment xj ← b ∈ {0, 1} 

such that xi becomes degenerate which 

contradicts Fact 3 (XOR is 

Non-degenerate).

Claim 1:  C has property P1= “xi is fed 
into another gate h’i ≠ h”

h

xi xj

¬P1

37

xi 0

if h is 
∧ 

set xj ← 0

∧

0xi

xi is 
disconnected 
via a Fixing 

Rule



Warm-up: Schnorr 3n - o(1) lower bound for XOR

Proof:  Assume C has ¬P1, then there 

exists an assignment xj ← b ∈ {0, 1} 

such that xi becomes degenerate which 

contradicts Fact 3 (XOR is Fully 

Sensitive).

Claim 1:  C has property P1= “xi is fed 
into another gate h’i ≠ h”

h

xi xj

h

xi xj

h’i

¬P1 P1
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Warm-up: Schnorr 3n - o(1) lower bound for XOR
Claim 2:  C has property P2= “h’i is 
not the output gate”

Proof:  Assume C has ¬P2, then there 

exists an assignment xi ← b ∈ {0, 1} that 

makes C constant (via a Fixing Rule) 

which contradicts “C computes XORn” .

This implies h’i is “below” another costly 

gate r.

h

xi xj

h’i

¬P2 P2

h

xi xj

h’i

r

some 
sub-circuit
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Warm-up: Schnorr 3n - o(1) lower bound for XOR
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h

xi

h’i

r

xj

Set xi ← b ∈ {0, 1} so that h’i is eliminated via a fixing rule.

Lemma: Let C be a circuit computing XORn, for n ≥ 2, then there exists one-bit 
restriction that eliminates at least 3 costly gates.

⇒ r and h will also be eliminated by any type of rules 

⇒ at least 3 gates are eliminated (q.e.d.)

To complete the Theorem: Use Fact 1 (XOR is DSR) to 
inductively achieve the desired lower-bound.



Warm-up: Schnorr 3n - o(1) lower bound for XOR
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Corollary : The optimal circuit size computing XORn under DeMorgan’s Basis, free 
¬-gates, is exactly  3(n - 1).

Fact 4:  (Elimination Rate Limit) : Let C be an optimal circuit computing XORn, then 
each 1-bit restriction eliminates at most 3 costly gates.

Observation:  The 3(n - 1) lower-bound also has a matching upper-bound, obtained 
by replacing each of of (n - 1) ⊕-gates with a 3-gate block computing XOR2.



Main 
Result

BU Theory Seminar - Spring 2024

42

● Proof Sketch of Theorem

○ Main Ideas

○ Schnorr’s Proof Revisit

○ Fleshing out the Local Structure



Our Technique – Proof Ideas
Theorem : Optimal (¬)XORn circuits over the DeMorgan basis partition into trees of 
n - 1 (¬)XOR2 sub-circuits when ¬-gates are free.

Proof Ideas:  

● Extract more information from the local structure given by the proof of Schnorr’s 
lower bound for XOR-circuit.

● Carry out case analysis of restricting and eliminating gates from optimal XOR circuits 
to characterize the “templates” using the Gate Elimination proof framework.
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Schnorr 3n - o(1) lower bound for XOR - Revisit

Lemma: Let C be a circuit computing XORn, for n ≥ 
2, then there exists one-bit restriction that eliminates 

at least 3 costly gates.

h

xi xj

h’i

r

?

?

?? ?
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?

Major Unknowns:

● Second input of r and h’i ?

● The costly gate that h is fed to ?

● Fan-out > 1 for h and h’i ?

● The costly gate that xj is fed to ?



Our Technique – Proof Sketch
Theorem:  Optimal (¬)XORn circuits over the DeMorgan basis partition into trees of 
n - 1 (¬)XOR2 sub-circuits when ¬-gates are free.

Proof Sketch:  we adapt the strategy from Schnorr

● We will show that there exists two distinct inputs 
xi, xj that are fed into a block B

● Argue B must compute XOR2

● Then we apply an inductive argument over the 
number of variables to obtained the desired 
optimal circuit template.

B

hi

xi xj

h’i

r
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Fleshing out the circuit template

h

xi xj

h’i

rSimulating Gate 
Elimination 
proof framework

B

Lemma:  there exists two distinct inputs xi, xj that are fed into a block B

Proof Sketch:

Construct B 
through 4 stages

h

xi xj

h’i

r

?

?

?? ?
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?



Fleshing out the circuit template
Stage 1:  show P1 = “r is the only costly successor of h’i”

h

xi xj

h’i

r

?

?

?r’ ?
Proof:  Suppose ¬P1 = “h’i is connected to r’ ≠ r”
Then there exists an assignment xi ← b ∈ {0, 1} 
such that h’i, h, r, and r’ are eliminated.

A contradiction to Fact 4 (Elimination Rate 
Limit) which says any 1-bit restriction can only 
eliminate 3 gates.
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Fleshing out the circuit template

h

xi xj

h’i

r

?

?

?r’ ?

h

xi xj

h’i

r

?

?

??

Stage 1:  show P1 = “r is the only costly successor of h’i”

P1
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Fleshing out the circuit template

h

xi xj

h’i

r

?

h’j

p’p

Stage 2:  assume h is connected to p, show P2 = “p is the only costly successor of h”

Proof sketch:  Suppose ¬P2 = “h is connected to 
p’ ≠ p” and xj is connected to h’j ≠ h
Perform case analysis on the identities of p, p’, h’j
1. p =? h’j (i.e. is p fed to h’i ?)

2. p’ =? h’i (i.e. is p’ fed to h’i ?)

3. p’ =? h’j (i.e. is xj fed to p’ ?)

4. h’j =? h’i (i.e. is xj fed to h’i ?)
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Fleshing out the circuit template – Pf Sketch of Stage 2 (cont)

● Each branch represents a distinct 
possibility for the identity of p, p’, h’j

● Each branch promises the existence of an 
assignment s.t. 4 gates are eliminated .
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Visualizing all cases via a Decision Tree



Fleshing out the circuit template

h

xi xj

h’i

r

?

h’j

p’p

Stage 2:  assume h is connected to p, show P2 = “p is the only costly successor of h”

h

xi xj

h’i

r

?

h’j

pP2
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?
?



Fleshing out the circuit template
Stage 3:  show P3 = “h’j is the same as h’i”

h

xi xj

h’i

r

?

h’j

p

h

xi xj

h’i

r pP3

52

?
?



Fleshing out the circuit template
Stage 4:  show P4 = “p is the same as r”

h

xi xj

h’i

r p P4

h

xi xj

h’i

r

B

What remains:

● via GE, show B 
computes XOR2

● use an inductive 
argument to 
complete the proof
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● 2 opposite directions

● Identify non-optimal XOR-circuits?



Open Problems
Our Main Theorem opens two opposite directions :

● Optimistic approach:  one can attempt to adapt Ilango’s Proof Framework for 
proving Hardness of MCSP* to extend the hardness result to MCSP.

● Pessimistic approach:  one can try to develop a polytime solution solving the 
Simple Extension Problem for XOR which rules out the possibility of using 
Ilango’s technique to show hardness of MCSP.
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Can we characterize non-optimal circuits computing XOR?



Thank You!!!
Questions?

(source of memes in pics)

BU Theory Seminar - Spring 2024
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Bonus: Application

BU Theory Seminar - Spring 2024
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Optimal XOR-circuit Identity Testing



Optimal XOR-circuit Identity Testing
● Input: a normalized circuit C computing a Boolean function f: {0, 1}n → {0, 1}
● Question: is C an optimal circuit computing XORn?

Brute-force Solution: on input C
1. Count the number of costly gates in C. If not 3n - 3, reject .
2. For each x ∈ {0, 1}n

a. Evaluate C(x) 
b. If C(x) ≠ XORn(x), reject

3. Accept 

Running Time: O(2n)
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Optimal XOR-circuit Identity Testing
● Input: a normalized circuit C computing a Boolean function f: {0, 1}n → {0, 1}
● Question: is C an optimal circuit computing XORn?

Improved Solution: on input C
1. Count the number of costly gates in C. If not 3n - 3, reject .
2. Partition the sorted gates into n - 1 blocks as described in our Main Result
3. For each block B:

a. Check if B computes (¬)XOR2, reject  if not. 
4.  If C(0n) = 0, accept . Otherwise, reject .
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Optimal XOR-circuit Identity Testing

Improved Solution: on input C
1. Count the number of costly gates in C. 

If not 3n - 3, reject .
2. Partition the sorted gates into n - 1 

blocks as described in our Main Result
3. For each block B:

a. Check if B computes (¬)XOR2, 
reject  if not. 

4.  If C(0n) = 0, accept . Otherwise, reject .

Correctness: 

Running Time:  O(n) since C is normalized

Claim: let C be a circuit of size 3n - 3 and can 
be partition into n - 1 (¬)XOR2-blocks, then 
C computes (¬)XORn

Proof idea: use strong induction 

● Step 1-3 follows from

● Step 4 follows from the definition of 
XOR, i.e. XORn(0n) = 0  
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