On Optimal XOR-Circuits: The One True Shape

 $\bullet \bullet \bullet$

Ngu (Nathan) Dang BU Theory Seminar - 04/29/2024 Joint work with Marco Carmosino (IBM) and Tim Jackman

Primer

This talk is mainly based on the following paper:

Minimal XOR Circuits: The One True Shape is a Binary Tree Submitted to CCC'24 & Draft of the Journal Version available here: <u>https://mcsp.work/opt-xor-shape.pdf</u>

BU Theory Seminar - Spring 2024

Background Motivation

- What are Circuits?
- Measuring Circuit Complexity
- Research Questions
- Our Motivation & Result
- Connection with Prior Work
- Does counting NOT-gates matter?

What are Circuits?

Circuits model the computation of Boolean functions on fixed input length by acyclic wires between "logical gates", i.e. Directed Acyclic Graphs (DAGs).

- There is 1 or multiple sources (variables) and exactly 1 sink (output),
- Each internal node including the sink are labeled with logical operations.

What are Circuits?

basis = a finite set of logical gates.

• In our work, we consider the **DeMorgan basis** = $\{\land, \lor, \neg\}$

- \land -gates and \lor -gates have fan-in 2, and \neg -gates have fan-in 1.
- We allow all types of gates to have **unbounded** fan-out.

Measuring Circuit Complexity

- Measurements of **Circuit Complexity** of a Boolean function f, given a basis **B**
 - count the number of gates or wires required to construct a circuit for f,
 - compute the circuit-depth, i.e. the longest path from a variable to the output.
- For our work, $\boldsymbol{\mathcal{B}} = \{ \land, \lor, \neg \}$
 - The Circuit Complexity (CC) is the number of \wedge -gates and \vee -gates, we refer them as the "**costly**" gates.
 - –-gates do not count towards the CC.
- For the rest of the talk, we consider **normalized circuits** (i.e. no double \neg).

Measuring Circuit Complexity

• A warm-up example:

$$XOR_2(x_1, x_2) = (x_1 \lor x_2) \land \neg (x_1 \land x_2)$$

 $CC(XOR_2) = 3$

This circuit is **optimal** under our measurement!

use the **least** number of costly gates

Measuring Circuit Complexity

• A warm-up example:

 $XOR_2(x_1, x_2) = (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$ $CC(XOR_2) = 3$

This circuit is also **optimal** under our complexity measurement!

But when ¬-gates count toward the complexity, this circuit is no longer optimal!

The existential question: *Do functions that require "large circuits" exist?*

Solved by Shannon who showed that <u>almost all</u> Boolean functions require circuits of size $\Omega(2^n/n)$ [Sha 49]

The algorithmic question: *The Minimum Circuit Size Problem (MCSP)*

- <u>Input:</u> an n-input Boolean function f as a 2ⁿ-bit truth table, an integer s
- <u>Question</u>: does there exist a DeMorgan circuit with at most s gates that computes f ?

What do we know so far about **MCSP**?

- MCSP is in NP.
- That's pretty much it...

- Whether it is **NP**-complete is a major open problem!
- Many variants of MCSP are NP-complete! [Mas 79, HOS 18, ILO 20, Ila 20]

The algorithmic question: *The Minimum Circuit Size Problem (MCSP)*

- <u>Input</u>: an n-input Boolean function f as a 2ⁿ-bit truth table, an integer s
- <u>Question</u>: does there exist a DeMorgan circuit with at most s gates that computes f ?

MCSP is **NP**-complete implies major complexity breakthrough!

e.g. the class EXP does not have small DeMorgan circuits! [KC 00, SS 20]

<u>This work</u> – The **design** question: given a Boolean function f, can we characterize every optimal circuit computing f?

For some functions, this is easy to answer! e.g. minimal circuits for n-bit OR/AND are simply trees of (n - 1) costly gates.

Ex: an optimal OR₄ circuit

<u>This work</u> – The **design** question: given a Boolean function f , can we characterize every optimal circuit computing f?

What about some slightly more complicated functions, e.g. XOR, the parity function?

- If parity-gates (e.g. ⊕) are allowed, then the optimal circuits computing XOR is similar to that of OR, a tree of (n 1) ⊕-gates.
- So, given the DeMorgan Basis, would the "shape" of such circuits change significantly?

<u>This work</u> – The **design** question: given a Boolean function f , can we characterize every optimal circuit computing f?

What about some slightly more complicated functions, e.g. XOR, the parity function?

• But most of all, why bother?

Under the Exponential Time Hypothesis (ETH), Ilango showed hardness of Partial MCSP (a variant of MCSP for partial function) [Ila 20].

Partial function f: $\{0, 1\}^n \rightarrow \{0, 1, *\}$, defined on a subset of inputs, i.e. return 0 or 1 given strings in the subset, and return * on everything else.

The Partial Minimum Circuit Size Problem (MCSP*)

- <u>Input</u>: an n-input Partial Boolean function f as a 2^n -bit truth table, an integer s
- <u>Question</u>: does there exist a DeMorgan circuit with <u>at most</u> s gates that agrees with f on defined inputs ?

The Exponential Time Hypothesis (ETH): 3SAT cannot be solved in DTIME(2^{o(n)})

Theorem [Ila 20]: Assuming ETH, MCSP* ∉ **P**

Open Problem: Assuming ETH, MCSP *\Colored P*

<u>The Exponential Time Hypothesis (ETH)</u> 3SAT cannot be solved in DTIME(2^{o(n)})

Theorem [Ila 20]: Assuming ETH, MCSP* ∉ **P**

Summary of Ilango's Reduction:

Simple Extension: let $f: \{0, 1\}^n \rightarrow \{0, 1\}$ be a Boolean function, then $g: \{0, 1\}^n \ge \{0, 1\}^m \rightarrow \{0, 1\}$ is said to be a Simple Extension of f if optimal circuits computing g can be obtained by adding <u>exactly</u> m extra costly gates to optimal circuits computing f.

Simple Extension: let f: $\{0, 1\}^n \rightarrow \{0, 1\}$ be a Boolean function, then g: $\{0, 1\}^n \ge \{0, 1\}^m \rightarrow \{0, 1\}$ is said to be a Simple Extension of f if optimal circuits computing g can be obtained by adding <u>exactly</u> m extra gates to optimal circuits computing f.

The f-Simple Extension Problem (f-SEP):

- <u>Input</u>: a Boolean function g: $\{0, 1\}^n \ge \{0, 1\}^m \rightarrow \{0, 1\}$ as a 2^{n+m} -bit truth-table
- <u>Question</u>: is g a Simple Extension of f: $\{0, 1\}^n \rightarrow \{0, 1\}$?

<u>Fact:</u> f-SEP ≤ MCSP

extend to partial function

g: $\{0, 1\}^n \ge \{0, 1\}^m \to \{0, 1, *\}$

<u>Fact:</u> f-SEP* ≤ MCSP*

<u>The Exponential Time Hypothesis (ETH)</u> 3SAT cannot be solved in DTIME(2^{o(n)})

Theorem [Ila 20]: Assuming ETH, MCSP* ∉ **P**

Summary of Ilango's Reduction:

Our Motivation - Does The Framework Still Work for Total MCSP?

The same framework **does not hold** for proving hardness of (total) MCSP !

"the set of optimal OR-circuits is so well structured that OR-SEP \in P" *Rahul Ilango, SIAM J. of Computing, 2022*

Facts:

- Optimal OR-circuits are Read-once Formulae.
- Simple Extension of a Read-once Formula is also a Read-once Formula.
- There exists poly-time algorithms that learn the exact identification of a given the truth-table of a read-once formula [AHK 93, BHH 95].

Our Motivation

Earlier, we asked <u>Why care about characterizing optimal circuits?</u>

Now, we know Ilango's framework does not hold for proving hardness of (total) MCSP !

Thus...

"... the missing component in extending our results to MCSP is finding some function f whose optimal circuits we can characterize but are also sufficiently complex."

Rahul Ilango, SIAM J. of Computing, 2022

Our Result – Statement

Our work characterizes optimal circuits for the function f = XOR

<u>**Theorem:**</u> Optimal (\neg) XOR_n circuits over the DeMorgan basis partition into trees of $(n - 1) (\neg)$ XOR₂ sub-circuits when \neg -gates are free.

Our Result – Visualization

Our Result – Connection to Prior Work

This structure for optimals circuits for XOR_n was already established by Kombarov.

But we can't directly use this result to address Ilango's question!

The reason is there are <u>two issues</u>:

- Kombarov's result counts ¬-gates towards the circuit complexity! [Kom 11]
- It seems plausible that the same result might not hold since ¬-gates are free to use.

Does NOT-gate fit in with Simple Extension?

Observation: the definition of Simple Extension is not compatible with counting ¬-gates towards the CC

BU Theory Seminar - Spring 2024

Basic Tools

- XOR-function
- Gate Elimination Proof Framework
- Warm-up: Schnorr's Lower-bound

The XOR-Function

For an n-bit string $x \in \{0, 1\}^n$, $n \ge 2$, we define $XOR_n(x)$ as follows

- $XOR_n(x) = 1$ if an odd number of bits of x are 1, and
- $XOR_n(x) = 0$ otherwise

Fact 1 (XOR is Downward Self-Reducible (DSR)): For any input $x \in \{0, 1\}^n$, we have $XOR_n(x_1 \dots x_n) = XOR_{n-1}(x_1 \dots x_{n-1}) \oplus x_n$

Fact 2 (XOR is Read-twice): let C be an optimal circuit for XOR_n , then every variable in C has fan-out 2.

The XOR-Function

For an n-bit string $x \in \{0, 1\}^n$, $n \ge 2$, we define $XOR_n(x)$ as follows

- $XOR_n(x) = 1$ if an odd number of bits of x are 1, and
- $XOR_n(x) = 0$ otherwise

Fact 3 (XOR is Fully Sensitive): for all $i \in [n]$ and **for all** assignments x = b, we have $XOR_n(b) \neq XOR_n(b \oplus e_i)$

Gate Elimination (GE) – Definition

Let C be a circuit computing f: $\{0, 1\}^n \rightarrow \{0, 1\}$

For $i \in [n]$ and $b \in \{0, 1\}$, we consider the 1-bit restriction $x_i \leftarrow b$ which sets the i-th variable x_i to the constant b.

C' = C|_{x, \leftarrow b} is the \leq (n – 1)-ary circuit obtained from C as follows.

- substitute $x_i \leftarrow b$ for all inputs labeled by x_i
- perform the following constant <u>simplification rules</u> on sub-circuits of C whenever possible

two types: passing and fixing rules

Gate Elimination (GE) – Rules

Passing Rules:

Gate Elimination (GE) – Rules

Passing Rules:

Key Takeaway : the variable x is still relevant to the rest of the circuit!

Gate Elimination (GE) – Rules

Fixing Rules:

Key Takeaway : the variable x may or may not be disconnected completely from the rest of the circuit!

 \wedge

1

Х

more rules can be applied after this point

0

Gate Elimination (GE) – Proof Framework

Task: given a circuit C, show C has some property (

<u>Framework:</u> Repeats the following proof by contradiction argument

- 1. Assume C has $\neg P$
- 2. Select a variable x_i and set $x_i \leftarrow b \in \{0, 1\}$
- 3. Apply the rules to simplify C to obtain a constant-free circuit C'
- 4. Argue that C' has a critical property Q that implies a contradiction.

<u>**Theorem</u>** [Sch 73]: The optimal circuit size computing XOR_n under DeMorgan's Basis, free \neg -gates, is at least 3(n - 1).</u>

when ¬-gates count, CC(XOR_n) ≥ 4(n-1) [Red'kin 71]

<u>Proof Sketch:</u>

- The key step is to use a Gate Elimination argument to show that some one-bit restriction eliminates at least 3 costly gates.
- Then, apply Fact 1 (XOR is DSR) to inductively argue for the desired lower-bound.

Lemma: Let C be a circuit computing XOR_n , for $n \ge 2$, then there exists one-bit restriction that eliminates at least 3 costly gates.

<u>Proof:</u> Let C be a circuit computing XOR_n and let h be a bottom level **costly gate** fed by two distinct variables x_i and x_i .

We want to prove the following two properties for C:

- $P_{i} = "x_{i}$ is fed into another gate $h'_{i} \neq h$ "
- $P_2 = "h'_i$ is not the output gate"

<u>Note:</u> for simplicity, we will omit ¬-gates in diagrams

Claim 1: C has property $P_{\eta} = x_i$ is fed into another gate $h'_i \neq h''$

Proof: Assume C has $\neg P_1$, then there exists an assignment $x_j \leftarrow b \in \{0, 1\}$ such that x_i becomes degenerate which <u>contradicts Fact 3</u> (XOR is Non-degenerate).

Claim 1: C has property $P_{\eta} = x_i$ is fed into another gate $h'_i \neq h''$

Proof: Assume C has $\neg P_1$, then there exists an assignment $x_j \leftarrow b \in \{0, 1\}$ such that x_i becomes degenerate which <u>contradicts Fact 3</u> (XOR is Fully Sensitive).

Claim 2: C has property $P_2 = h'_i$ is not the output gate"

Proof: Assume C has $\neg P_2$, then there exists an assignment $x_i \leftarrow b \in \{0, 1\}$ that makes C constant (via a Fixing Rule) which <u>contradicts "C computes</u> XOR_n". This implies h'_i is "below" another costly gate r.

Lemma: Let C be a circuit computing XOR_n , for $n \ge 2$, then there exists one-bit restriction that eliminates at least 3 costly gates.

Set $x_i \leftarrow b \in \{0, 1\}$ so that h'_i is eliminated via a fixing rule.

- \Rightarrow r and h will also be eliminated by any type of rules
- \Rightarrow at least 3 gates are eliminated (q.e.d.)

To complete the Theorem: Use Fact 1 (XOR is DSR) to inductively achieve the desired lower-bound.

<u>Observation</u>: The 3(n - 1) lower-bound also has a matching upper-bound, obtained by replacing each of of (n - 1) \oplus -gates with a 3-gate block computing XOR₂.

<u>**Corollary**</u>: The optimal circuit size computing XOR_n under DeMorgan's Basis, free \neg -gates, is <u>exactly</u> 3(n - 1).

<u>Fact 4</u>: (Elimination Rate Limit) : Let C be an optimal circuit computing XOR_n , then each 1-bit restriction eliminates at most 3 costly gates.

BU Theory Seminar - Spring 2024

Main Result

- Proof Sketch of Theorem
 - Main Ideas
 - Schnorr's Proof Revisit
 - Fleshing out the Local Structure

Our Technique – Proof Ideas

<u>**Theorem :**</u> Optimal (\neg) XOR_n circuits over the DeMorgan basis partition into trees of $n - 1 (\neg)$ XOR₂ sub-circuits when \neg -gates are free.

<u>Proof Ideas:</u>

- Extract more information from the local structure given by the proof of Schnorr's lower bound for XOR-circuit.
- Carry out case analysis of restricting and eliminating gates from optimal XOR circuits to characterize the "templates" using the Gate Elimination proof framework.

Schnorr 3n - o(1) lower bound for XOR - Revisit

Lemma: Let C be a circuit computing XOR_n , for $n \ge 2$, then there exists one-bit restriction that eliminates at least 3 costly gates.

Major Unknowns:

- Second input of r and h'_{i} ?
- The costly gate that x_i is fed to ?
- The costly gate that h is fed to ?
- Fan-out > 1 for h and h'_i ?

Our Technique – Proof Sketch

<u>**Theorem:**</u> Optimal (\neg) XOR_n circuits over the DeMorgan basis partition into trees of $n - 1 (\neg)$ XOR₂ sub-circuits when \neg -gates are free.

Proof Sketch: we adapt the strategy from Schnorr

- We will show that there exists two distinct inputs x_i, x_i that are fed into a block **B**
- Argue $\boldsymbol{\mathcal{B}}$ must compute XOR₂
- Then we apply an inductive argument over the number of variables to obtained the desired optimal circuit template.

Lemma: there exists two distinct inputs x_i, x_j that are fed into a block $\boldsymbol{\mathcal{B}}$

46

Stage 1: show $P_1 =$ "r is the only costly successor of h';"

<u>Proof:</u> Suppose $\neg P_1 = \text{``h'}_i$ is connected to $r' \neq r''$. Then there exists an assignment $x_i \leftarrow b \in \{0, 1\}$ such that h'_i , h, r, and r' are eliminated.

A contradiction to Fact 4 (Elimination Rate Limit) which says any 1-bit restriction can only eliminate 3 gates.

<u>Stage 1</u>: show $P_1 =$ "r is the only costly successor of h';"

<u>Stage 2</u>: assume h is connected to p, show $P_2 = p$ is the only costly successor of h"

Proof sketch: Suppose $\neg P_2 = \text{``h is connected to } p' \neq p'' \text{ and } x_j \text{ is connected to } h'_j \neq h$ Perform case analysis on the identities of p, p', h'_j 1. $p = h'_j$ (i.e. is p fed to h'_i ?)

- 2. $p' = h'_i$ (i.e. is p' fed to h'_i ?)
- 3. $p' = ?h'_{i}$ (i.e. is x_{i} fed to p'?)
- 4. $h'_{i} = h'_{i}$ (i.e. is x_{i} fed to h'_{i} ?)

Fleshing out the circuit template – Pf Sketch of Stage 2 (cont)

Visualizing all cases via a Decision Tree

- Each branch represents a distinct possibility for the identity of p, p', h'_i
- Each branch promises the existence of an assignment s.t. **4 gates are eliminated** .

<u>Stage 2</u>: assume h is connected to p, show $P_2 = p$ is the only costly successor of h"

<u>Stage 3</u>: show $P_3 = h'_i$ is the same as h'_i .

<u>Stage 4</u>: show $P_4 = "p$ is the same as r"

What remains:

- via GE, show *B* computes XOR₂
- use an inductive argument to complete the proof

BU Theory Seminar - Spring 2024

Open Problems

- 2 opposite directions
- Identify non-optimal XOR-circuits?

Open Problems

Our Main Theorem opens **two opposite directions** :

- **Optimistic approach:** one can attempt to adapt Ilango's Proof Framework for proving Hardness of MCSP* to extend the hardness result to MCSP.
- <u>**Pessimistic approach:**</u> one can try to develop a polytime solution solving the Simple Extension Problem for XOR which rules out the possibility of using Ilango's technique to show hardness of MCSP.

Can we characterize non-optimal circuits computing XOR?

BU Theory Seminar - Spring 2024

Thank You!!! Questions?

BU Theory Seminar - Spring 2024

Bonus: Application

Optimal XOR-circuit Identity Testing

Optimal XOR-circuit Identity Testing

- Input: a *normalized* circuit C computing a Boolean function f: $\{0, 1\}^n \rightarrow \{0, 1\}$
- Question: is C an optimal circuit computing XOR_n?

Brute-force Solution: on input C

1. Count the number of costly gates in C. If not 3n - 3, reject.

2. For each
$$x \in \{0, 1\}^n$$

- a. Evaluate C(x)
- b. If $C(x) \neq XOR_n(x)$, reject
- 3. Accept

Running Time: O(2ⁿ)

Optimal XOR-circuit Identity Testing

- Input: a *normalized* circuit C computing a Boolean function f: $\{0, 1\}^n \rightarrow \{0, 1\}$
- Question: is C an optimal circuit computing XOR_n?

Improved Solution: on input C

- 1. Count the number of costly gates in C. If not 3n 3, **reject**.
- 2. Partition the sorted gates into n 1 blocks as described in our Main Result
- 3. For each block B:
 - a. Check if B computes $(\neg)XOR_2$, **reject** if not.
- 4. If $C(0^n) = 0$, accept. Otherwise, reject.

Optimal XOR-circuit Identity Testing

Improved Solution: on input C

- Count the number of costly gates in C. If not 3n - 3, reject.
- Partition the sorted gates into n 1 blocks as described in our Main Result
- 3. For each block B:
 - a. Check if B computes (¬)XOR₂, **reject** if not.
- 4. If $C(0^n) = 0$, **accept**. Otherwise, **reject**.

Running Time: O(n) since C is normalized

Correctness:

• Step 1-3 follows from

<u>Claim</u>: let C be a circuit of size 3n - 3 and can be partition into n - 1 (¬)XOR₂-blocks, then C computes (¬)XOR_n

Proof idea: use strong induction

Step 4 follows from the definition of XOR, i.e. XOR_n(0ⁿ) = 0