
On The (Exponent) Positional Decoder & Multiplexing Function

Ngu Dang ∗

June 2025

Abstract

In this survey, we revisit the complexity of the multiplexer function MUX, that is, the 2N − 2 lower
bound (Paul, 1975) and the 2N + O(

√
N) upper bound (Klein & Patterson, 1980) providing two main

contributions.

• First, we refine known upper bounds by giving exact summation formulas for our recursive construc-
tions, not only eliminating the O(·) terms and making the counts fully explicit, but also providing
a clean and easy to analyze construction that helps provide better understanding on how MUX-
function works. At the same time, we also refine and modernize the proof of its known lower bound
under the DeMorgan basis (which was done in a slightly different basis in Paul’s work).

• Second, we examine the limits of the classical Gate Elimination method in this setting and identify
why even a small improvement over Paul’s lower bound would require insights beyond existing
techniques.

Contents
1 Introduction 2

1.1 Background & Motivation . 2
1.2 Related Work . 2
1.3 Our Contribution . 3
1.4 Discussion & Next Steps . 3

2 Preliminaries 3
2.1 Minterms, Disjunctive Normal Form (DNF) & Boolean Circuits 3
2.2 Positional Decoder & Multiplexer . 4

3 On (Exponent) Positional Decoder 5
3.1 Previous Work on DEC . 5
3.2 On the upper bound and lower bound of eDEC . 5

3.2.1 Upper Bound . 6
3.2.2 Conjecture on the Lower Bound and Optimal Circuit Structure 7

4 On (Exponent) Multiplexer 9
4.1 Previous work on MUXn . 9

4.1.1 Upper Bound . 9
4.1.2 Lower Bound . 11

4.2 On The Upper Bound and Lower Bound of eMUX . 13
4.2.1 Upper Bound . 13
4.2.2 Conjecture on the Lower Bound and the Optimal Circuit Structure 15

∗Boston University, ndang@bu.edu

1

1 Introduction

1.1 Background & Motivation
Understanding the circuit complexity of natural Boolean functions is a fundamental pursuit in theoretical
computer science for over five decades. Among existing techniques, Gate Elimination — a robust method
for proving circuit lower bounds by analyzing the effects of input substitution — has emerged as one of the
most tractable and intuitive methods for proving circuit lower bounds. In particular, current known lower
bounds in the DeMorgan, U2 [Red73; Sch74; Zwi91; IM02; ILMR02], and B2 [Sch74; Sto77; DK11; FGHK16;
LY22] basis were proven via Gate Elimination. However, despite its appeal and the long-standing interest,
progress in proving strong lower bounds remains limited. To date, no super-linear lower bounds are known
for general Boolean circuit classes over different bases, and breaching this barrier via Gate Elimination alone
remains elusive [Weg87].

One insight from lower bound proofs is that they often reveal partial structure about optimal circuits
computing the function itself. Thus, understanding the structure of optimal circuits is also a fundamental
and parallel goal. Unfortunately, even for seemingly simple functions, the space of structurally distinct but
functionally equivalent circuits is vast and not trivial to analyze [Sat81; BS84; Weg87].

In this survey, we aim to make this challenge more explicit by focusing on a canonical Boolean function,
the Multiplexer (MUX). Given its structure — selecting a bit from a list of data bits based on an address
encoded in binary — the MUX-function captures an essential form of computation: indirect addressing or
memory lookup. Despite its simple nature, proving tight lower and upper bounds for its circuit complexity
has remained a challenging open problem for decades. This makes MUX a prime candidate for advancing our
understanding of Boolean circuit complexity as well as a testbed for the Gate Elimination technique. To get
a better understanding of how MUX works, we also study another elementary Boolean function that we call
the Positional Decoder (DEC) which, on the binary encoded address, outputs a one-hot vector indicating the
position of the selected data bit in the list of all bits. These functions are not only fundamental in logic design
but also present rich structures worth analyzing. We hope our clarifies the limitations of current techniques
and motivates the search for stronger methods as well as further studies on optimal circuit structures.

1.2 Related Work
The Complexity for Multiplexer Function in Switching Circuits [LK21] Lozhkin and Khzmalyan
studied the complexity of the MUX-function in the setting of switching circuits, a model that measures
complexity by the number of binary switches rather than logic gates. They used the notion of noneliminable
variable sets to argue baseline lower bounds under substitutions. In particular, they derive combinatorial
constraints on cycles of data-input switches and bound how many data variables can appear with exactly
two switches, then propagate these bounds through a sequence of circuit simplifications under substitutions
to reach the global lower bound and achieved a tighter bound for MUX under the switching circuits setting
compared to known results in Boolean circuits setting.

On the Depth of a Multiplexer Function with a Small Number of Select Lines [Loz24]. Lozhkin
characterizes the depth complexity of the standard multiplexer function in the DeMorgan basis. For suffi-
ciently large n, it is shown that the minimum depth of any circuit computing MUXn is exactly n+ 2 using
techniques such as substitution on unstrikable variable sets. While depth is not the main focus in our work,
these results underscore the inherent rigidity of MUX- circuits supporting our motivation to study recursive
decompositions in the size model, where structure can be made more explicit.

Linear-Size Boolean Circuits for Multiselection [HR24]. Holmgren and Rothblum study the multi-
output variant of MUX, where instead of selecting a single data value, the circuit selects k of them based on a
set of selection indices. They show that multiselection can be implemented by Boolean circuits of slight bigger
than linear size in n, the total bit-length of the data and selectors, even when k is large. This is accomplished
via combinatorial routing networks and conditional move gadgets, bypassing the need for multiple sequential
MUX computations. Although their work targets a more general functionality, it provides further evidence
that modular designs rooted in MUX-like components can be size-efficient even in more expressive models.

2

1.3 Our Contribution
This work revisits two fundamental functions in circuit complexity: the Multiplexer (MUX) and the Decoder
(DEC), focusing on studying their upper and lower bounds within the DeMorgan basis ({∧,∨,¬}) where ¬-
gates are for free. We re-express known lower bound from the works of Paul [Pau75] which was done under
a different basis {∧,⊕,¬} (Theorem 13). We also recount the known upper-bound by Klein and Paterson
[KP80] while making certain implicit steps in their work fully explicit and accessible (Lemma 11).

Furthermore, to simplify analysis and avoid irregularities arising in generic even or odd input lengths,
we define and analyze restricted variants of these functions—Exponent Decoder (eDEC) and Exponent Mul-
tiplexer (eMUX) where the address length is always a power of two. This constraint enables recursive
constructions that are clean, easily analyzable, and asymptotically optimal while remaining representative
of the general case. In particular, we provided a fully formal and expanded version of the upper bound
construction from [KP80] by first analyzing the construction for eDEC (Theorem 5) and then lift that to
eMUX (Theorem 14).

Lastly, we highlight subtle difficulties in identifying optimal circuit structures even for small-input in-
stances in the family of eDEC-functions (Observation 9). These challenges demonstrate the inherent lim-
itations of classical techniques like Gate Elimination and suggest the need for stronger variants or even
alternative methods. By isolating and articulating these obstacles, this work contributes to a better under-
standing of the structural complexity underlying even basic Boolean functions.

1.4 Discussion & Next Steps
While this survey is a bit short of a new insights towards a tighter lower bound, it clarifies the structural
barriers and outline concrete pathways for progress. In particular, a tight bound for eMUXℓ remains elusive,
let alone MUXn. Even a small, provable gap above 2N−2 would be significant, as it would demonstrate a new
technique capable of handling substructures that classical elimination leaves untouched. Whether through
combinatorial innovation, fusion-based covers, or solver-driven structure search, cracking this problem would
advance our toolkit for Boolean circuit lower bounds. Building on this foundation, two promising directions
emerge:

Applying other lower-bound frameworks. As surveyed by Wigderson [Wig93], the Fusion Method
turns the computation into a static cover problem over a set of “fusing functionals.” By choosing functionals
tailored to the address/data separation in eMUXℓ (or more generally, MUXn), it may be possible to prove
that small covers are impossible and thereby derive new bounds. Recently, Calavar and Oliveira recast
Fusion Method using a modern set-theoretic language that works for various settings including non-monotone
Boolean circuits [CO25]. They mention that reproving known circuit lower bounds via Gate Elimination,
or better yet improving these lower bounds, for non-monotone functions using their framework remains an
open problem.

Formalizing conjectures for solver-aided verification. Tools like Programming Z3 by Bjørner, de
Moura, Nachmanson, and Wintersteiger [BMNW18] can symbolically explore all candidate circuits up to
a certain size, ruling out counterexamples and potentially suggesting new elimination patterns. Given the
combinatorial explosion of structurally distinct circuits, solver-aided search could be crucial for finding
patterns or tightening conjectures.

2 Preliminaries

2.1 Minterms, Disjunctive Normal Form (DNF) & Boolean Circuits
Throughout this paper, we use the notion of a minterm in the variables in X = {x1, x2, . . . , xn} which is
the AND of each variable or its negation. For instance, when n = 4, x1 ∧ x2 ∧ x3 ∧ x4 is a minterm, and
it has value 1 exactly when x1x2x3x4 = 1100. We observe the following useful fact that each input string
x ∈ {0, 1}n corresponds to exactly one minterm in n variables or its negation. We say the disjunctive normal
form (DNF) of a Boolean function f : {0, 1}n → {0, 1} is the OR of the minterms of f .

3

We study general Boolean circuits over the DeMorgan basis B = {∧,∨,¬, 0, 1} of Boolean functions:
binary ∧ and ∨, unary ¬ and zero-ary (constants) 1 and 0. Circuits take zero-ary variables in X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . ym} for some fixed n and m as inputs. The standard formulation
of circuits consists of single-sink DAGs with nodes labeled by function symbols or variables and edges as
“wires” between the gates. We write VC and EC to denote the set of nodes and the set of edges of a circuit
C respectively, omitting the subscript when it is clear which circuit is being referenced. Boolean circuits
compute Boolean functions through substitution followed by evaluation.

An assignment of input variables is a mapping from the set of inputs to {0, 1}. To substitute into a
circuit according to an assignment, each input xi is replaced by the constant. To evaluate a circuit, the
values of interior nodes labeled by function symbols are computed in increasing topological order. For each
interior node labeled by a function, it’s value is obtained by applying it’s function to the value of the node’s
incoming wires. The output of the circuit overall is the value of its sink.

Let Fn be the family of Boolean functions on n variables. We say a circuit G on n variables computes
g ∈ Fn if for all α ∈ {0, 1}n, G(α) = g(α). The size of a circuit G, denoted |G|, is the number of ∧ and ∨
gates in the circuit, and CC(g), the circuit complexity of a Boolean function g, is the minimum size of any
circuit computing g. Since only ∧ and ∨ gates contribute to circuit size, we refer to these gates as costly.
We say a circuit G computing g is optimal if |G| = CC(g).

2.2 Positional Decoder & Multiplexer
Definition 1 (Multiplexer). We define the multiplexer MUXn : {0, 1}n × {0, 1}2n → {0, 1} as follows. For
all (a, x) where a ∈ {0, 1}n, x ∈ {0, 1}2n , we have

MUXn(a, x) = x(a)

where x(a) is the (a)-th bit of x (0-indexed) when a is interpreted as a base-2 number.

For example, if n = 2, a = 01, and x = x0x1x2x3 = 0101, then (a) = 1, thus MUXn(a, x) = x1 = 1.
Throughout this paper, we will address a1, . . . an as the address bits, and x1, . . . , x2n as the data bits.

To better understand the construction for MUX-circuits later, we define a binary-to-positional decoder as
follows

Definition 2 (Positional Decoder). A function DECn : {0, 1}n → {0, 1}2n is called a binary-to-positional
decoder if the following holds:

DECn(a) = (sel0(a), . . . , sel2n−1(a))

where seli(a) = 1 iff i = (a)

Thus we can write the definition of MUX as a DNF using the output of DECn as follows

MUXn(a, x) =

2n−1∨
i=0

seli(a) ∧ xi

Using the example above, we have DEC2(a) = (0, 1, 0, 0), and thus

MUX2(a, x) = (0 ∧ x0) ∨ (1 ∧ x1) ∨ (0 ∧ x2) ∨ (0 ∧ x3) = x1 = 1

For our results, we consider a restricted family of DEC and MUX where the length of input strings is
strictly a power of 2. Namely,

Definition 3 (Exponent Positional Decoder and Multiplexer). Let ℓ ∈ N, we define the classes of functions
of Exponent Positional Decoders eDECℓ : {0, 1}2

ℓ → {0, 1}22
ℓ

and Exponent Multiplexers eMUXℓ : {0, 1}2
ℓ ×

{0, 1}22
ℓ

→ {0, 1} as follows

eDECℓ(a) = (sel0(a), . . . , sel22ℓ−1
(a))

where seli(a) = 1 iff i = (a)

4

eMUXℓ(a, x) =

22
ℓ−1∨
i=0

seli(a) ∧ xi

Here, notice the subscript of ℓ used in the definition of Binary Positional Decoder and Multiplexer which
no longer indicates the number of input variables. Instead, it serves as an “index” for the function in this
particular family. So for example, eDEC0 is the first and “smallest” one in the eDEC-function family and it
corresponds to DEC1 in the standard decoder family. Similarly, eDEC1 is the second one in the family and
corresponds to DEC2, eDEC2 to DEC4, and so on. The same logic applies for the eMUX-function family.

Finally, note that from the definitions, eDEC and eMUX (as well as DEC and MUX) must depend on all
of its input variables.

3 On (Exponent) Positional Decoder
In this section, we study the upper bound and lower bound for the Binary Positional Decoder (eDECℓ). We
begin with recounting the previous work on the generic Decoder DECn for n ∈ N in [KP80; SC98]. Then, we
present our upper bound and conjecture for the lower bound for eDECℓ where, as a reminder, input lengths
are only powers of 2.

3.1 Previous Work on DEC

To begin with, we will look at a naive construction for a circuit computing DECn. Observe that for n address
bits, there are 2n = N possible minterms, and each minterm corresponds to exactly one output of DECn.
Thus, our circuit construction is to simply compute all possible minterms composed by the address bits
a1, . . . , an. To construct a minterm, we need n− 1 = logN − 1 ∧-gates. Therefore, this construction yields
an upper bound CC(DECn) ≤ (logN − 1)N which is O(N logN) costly gates.

However, observe that we can achieve a better upper-bound by constructing the circuit for DECn re-
cursively. Namely, we notice that by definition, minterms have a recursive property, i.e. a minterm on n
variables is an AND of 2 smaller minterms, one is on half of the variables, and the other one is on the
other half of the variables. That said, a better way to construct a DECn-circuit is to use two subcircuits,
DEC⌊n/2⌋-circuit and DEC⌈n/2⌉-circuit, and combine every minterm generated by the first DEC⌊n/2⌋-circuit
with every minterm generated by the second DEC⌈n/2⌉-circuit with ∧-gates. We present Figure 1 regarding
this construction in our upper bound proof in Section 3.2.1 below. Thus, this construction yields a circuit
complexity that is at most twice the complexity of DECn/2-circuit plus N ∧-gates that are used to combine
the minterms of the two DEC-subcircuits.

Lemma 4 ([KP80; SC98]). CC(DECn) ≤ N+CC(DEC⌊n/2⌋)+CC(DEC⌈n/2⌉) = N+O(
√
N), where N = 2n

Notice that each output entry of DECn corresponds to exactly one minterm the variables {a1, a2, . . . , an}.
Each minterm computes a distinct non-constant function which requires at least one costly gate to compute,
and there are 2n possible minterms. Thus, an obvious lower bound for the circuit complexity of DECn is
CC(DECn) ≥ N [SC98]. However, this lower bound only gives us information regarding the output layer
on the top of the circuit as n gets large which leaves rooms for improvement if one can witness a restriction
that is guaranteed to eliminate gates in the intermediate levels of the circuit.

3.2 On the upper bound and lower bound of eDEC
In this section, we present an upper bound and a lower bound for eDEC that are nearly tight to one another.
We note that our construction for the upper bound is based on that of [KP80; SC98], but we provide an
exact count of gates for the case of eDEC. Then, we show the optimal structure of circuits computing eDECℓ,
for any ℓ ∈ N.

5

3.2.1 Upper Bound

Theorem 5. Let ℓ ∈ N and N = 22
ℓ

, then CC(eDECℓ) ≤ N + S(N) where S(N) =
∑log logN−1

i=1 2i ·N1/2i

Proof. Let r = s = 2ℓ

2 = 2ℓ−1, then for some a = b ◦ c, where b ∈ {0, 1}r, c ∈ {0, 1}s, and i = 0, . . . , 2r − 1,
j = 0, . . . 2s − 1, we have

seli·2r+j(a) = seli·2r+j(b ◦ c) = seli(b) ∧ selj(c)

which implies the following equation computing eDECℓ defined in Definition 3

eDECℓ(a) = eDECℓ(b ◦ c) = (seli(b) ∧ sel0(c), . . . , seli(b) ∧ sel2j−1(c) for i = 0, . . . , 2r − 1)

In words, for every i = 0, . . . , 2s − 1, we compute seli(b) ∧ selj(c) for every j = 0, . . . , 2r − 1, so sel0(a)
corresponds to seli(b)∧selj(c) where (i, j) = (0, 0), and sel1(a) corresponds to the term where (i, j) = (0, 1),
and so on.

We observe the following recursive construction for Dℓ based on the equation above. In particular, let
Dℓ be the circuit computing eDECℓ, then the construction of Dℓ uses two Dℓ−1 sub-circuits and the output
of Dℓ are given by connecting the outputs of the two Dℓ−1 in the following manner: for each output of one
Dℓ−1, we connect it to each output of the other Dℓ−1 using an ∧-gate which requires a total of N ∧-gates.
Thus, we obtain

CC(eDECℓ) ≤ 2 · CC(eDECℓ−1) +N

We can repeat this process to construct Dℓ−1 using two sub-circuits Dℓ−2, and so on which suggests a
recurrence for the construction of eDECℓ-circuits. In particular, observe that the base case of the recursive
construction is when ℓ = 0 which is a simple decoder that has 22

0

= 2 outputs. This decoder requires
zero costly gate since we have only two possible minterms, i.e. either the variable itself or its negation, so
CC(eDEC0) = 0. Thus, we can express the upper-bound of CC(eDECℓ) via the following recurrence with
N = 22

ℓ

=⇒
√
N = 22

ℓ/2 = 22
ℓ−1

(meaning decreasing ℓ by 1 accounts for taking the square root on the
number of outputs)

T (N) =

{
0, if N = 2

2 · T (N1/2) +N, if N > 2

Now, we compute the number of steps to reach the base case. Let this number be k, then we have
1 = ℓ

2k
=⇒ 2k = logN =⇒ k = log logN . Next, we unroll the recurrence for k steps.

T (N) = 2 · T (N1/2) +N = 2(2 · T (N1/4) +N1/2) +N

= 4 · T (N1/4) + 2 ·N1/2 +N

= 8 · T (N1/8) + 4 ·N1/4 + 2 ·N1/2 +N

. . .

= 2k · T (2) +
k−1∑
i=0

2i ·N1/2i

= logN · 0 +N +

log logN−1∑
i=1

2i ·N1/2i

= N +

log logN−1∑
i=1

2i ·N1/2i

Setting S(N) =
∑log logN−1

i=1 2i ·N1/2i , we have CC(eDECℓ) ≤ N + S(N) as desired.

Remark 6. Our upper bound for eDECℓ is consistent with the lower bound of DECn in Lemma 4. In
particular, the first term in S(N), 2 · N1/2, dominates the others, and thus, we believe one can show that
S(N) = O(

√
N). Furthermore, a useful thing to try is to derive the exact count for the general case of DECn

where n is even or odd, each may differ by a few gates, but should be in O(
√
N) still.

6

∧

sel0

∧

sel1

∧

sel2

∧

sel3

∧

sel4

∧

sel5

∧

sel6

∧

sel7

∧

sel8

∧

sel9

∧

sel10

∧

sel11

∧

sel12

∧

sel13

∧

sel14

∧

sel15

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

¬a0 ¬a1 a0 a1 ¬a2 ¬a3 a2 a3

Figure 1: The figure shows the construction of DEC4 that uses two DEC2 subcircuits. The total complexity
of this construction is 16 + 2 · 161/21 = 16 + 8 = 24 costly gates. For readability, we simplify the negations
of the input variables by treating each negation as its own input node.

3.2.2 Conjecture on the Lower Bound and Optimal Circuit Structure

Now, we study the lower bound of eDEC. Notice that just like DECn, we have CC(eDECℓ) ≥ N where
N = 22

ℓ

. However, this lower bound eludes the potential costly gates internally which leaves room for
improvement. We conjecture that the upper bound is tight, and better yet, the circuit construction in
Theorem 5 is optimal. In particular, we believe the following statement holds

Conjecture 7. Any optimal circuit computing eDEC2 requires 2 subcircuits computing eDEC1.

To achieve this, we believe it is crucial to characterize the optimal circuits computing eDEC1 (i.e. ℓ = 1)
and generalize the pattern for any ℓ ≥ 2 using Gate Elimination. In particular, the recursive decomposition
from the upper bound construction indicates that each minterm for eDEC2 can be expressed as an AND
between minterms from two independent eDEC1 instances (one for the first half and one for the second half
of address bits). Then, suppose there exists an optimal eDEC2-circuit without two distinct eDEC2 subcircuits
clearly computing separate halves. Then, one might be able to argue that minterm computation would have
redundant computations that might not optimally share intermediate results. This might involve explicitly
enumerating all possible cases and gate counts for any deviation from the conjectured pattern of using two
explicit eDEC1-subcircuits, and then show via a detailed gate-count analysis (i.e. counting how many gates
are unnecessarily duplicated) that such a structure cannot be optimal. Finally, one can then generalize via
an inductive argument to obtain.

Conjecture 8. For any ℓ > 2, optimal circuits computing eDECℓ requires 2 subcircuits computing eDECℓ−1.

However, we notice the case ℓ = 1, characterizing the optimal circuits computing eDEC1 in our setting
can yield multiple “shapes”. In paricular,

Observation 9. Let eDEC1 : {0, 1}21 → {0, 1}22
1

be the binary positional decoder for 2 address bits a0, a1.
Then, any optimal circuit C computing eDEC2 satisfies:

1. CC(eDEC1) = |C| = 4,

7

2. Each costly gate corresponds to uniquely one minterm in {a0a1, a0a1, a0a1, a0a1}

3. There is one address bit that is read at least 3 times, and all address bits must be read at least twice.

Proof. Let C be an optimal circuit computing eDEC2. To prove statement (1), we show |C| ≤ 4 and |C| ≥ 4.
Apply Lemma 5 for one iteration of the recurrence with ℓ = 2, we obtain |C| ≤ 4. We now show |C| ≥ 4. To
this end, note that the functions computing the minterms are disjoint, and each requires at least one costly
gate to compute. In other words, a single costly gate cannot be the output gate of more than one minterm,
ensuring no sharing of costly gates among the outputs. This also implies statement (2). For statement (3),
we first argue that all address bits must be read at least twice. Assume otherwise, then there exists an
assignment that disconnects ai from the circuit via a fixing rule on its costly successor which contradicts the
definition of eDEC which depends on all input variables.

Now, to prove that there exists one address bit that must be read at least 3 times, we first show the
following claim regarding the input of each costly gate

Claim 10. Each costly gate in C must read at least one input variable or its negation.

Proof. Assume towards contradiction that a costly gate gi reads the outputs of two other costly gate gj and
gk. Note that gj ̸= gk as otherwise, we have gi ≡ gj or gi becomes a constant, and in whichever case, we can
simplify gi contradicting the optimality of C.

Note that there exists an assignment α, β such that gj(α) = gk(α) = 0 and gj(β) = gk(β) = 0 which
results in gi(α) = gi(β) = 0 regardless of gi’s gate-type. Indeed, since each of the 4 costly gates must
correspond to a distinct minterm, a witness of such assignments α, β are two that make gi and the last costly
gate evaluates to 1 respectively. However, gi(α) = 1 in this case and thus gi(α) ̸= gi(β), a contradiction.

At this point, we know that each of the 4 costly gates must read at least a literal or its negation as one
of its inputs. Now, since C is finite, there exists at least one (bottom) costly gate that reads both input
variables as its inputs. Since each costly gate has fan-in 2, then there are at least 2 + 1 + 1 + 1 = 5 literals
that is read, and thus by the pigeonhole principle, one of the input variables must be read at least 3 times
as desired.

Some optimal shapes of C that satisfy the 3 conditions above are shown in Figure 2 below.

∧

a0a1

∧

a0a1

∧

a0a1

∧

a0a1

¬a0 ¬a1 a0 a1

(a) Both inputs are read 4
times, each is read negatively
2 times and positively 2 times

∧

a0a1

∧

a0a1

¬ ¬

∧

a0a1

∧

a0a1

¬a0 ¬a1 a0 a1

(b) a0 are read 4 times and a1
are read only twice

∨

a0a1

∧

a0a1

¬

¬

∧

a0a1

∧

a0a1

a0 a1

(c) Both inputs are read 3
times positively

∧

a0a1

¬

∧

a0a1

¬a0 ¬a1 a0 a1

∧

a0a1

¬

∧

a0a1

¬

(d) a0 are read 3 times and a1
are read only twice

Figure 2: Different shapes of optimal eDEC1 circuits. For readability, we simplify the negation on the input
variables and treat each negation like a separate input.

Having multiple “shapes” for eDEC1 yields certain difficulties for proving our conjectures via Gate Elim-
ination alone.

8

• The observation above shows that optimal circuits computing eDEC1 does not necessarily have the
“nice” output layer composed of ∧-gates. Thus, it is unclear to us whether this only happens for eDEC1

or not which makes it difficult to enumerate all possible cases for Gate Elimination argument.

• We had hoped that eDEC1 circuits compute each minterm independently (i.e. no minterm can be used
to compute other minterms in the output) which can be a useful “pattern” for generalizing how the
structure of the circuits for cases of ℓ ≥ 2 should look like, but it is unfortunately not the case as in
Figure 2b, 2c, and 2d.

• It seems reasonable to us that eDECℓ for ℓ ≥ 2 also contain the same issue, and thus, it is unclear
whether the optimal way to compute eDECℓ in this case is to have to compute each “half-minterm”
and AND-ing them together just by using Gate Elimination.

4 On (Exponent) Multiplexer

4.1 Previous work on MUXn

In this section, we aim to recount the elementary lower bound by Paul [Pau75] and upper bound [KP80]
by Klein and Paterson for MUXn which motivates our line of work. We present a detailed and refined
presentation for both proofs of the upper bound and lower bound respectively.

4.1.1 Upper Bound

We begin with establishing an upper bound for MUXn, and we start with the naive circuit construction. In
particular, the construction follows from the alternative definition of MUXn via Definition 2 of DECn. As a
reminder,

MUXn(a, x) =

2n−1∨
i=0

seli(a) ∧ xi

In particular, it uses a total of N − 1 ∨-gates and N ∧-gates, where N = 2n (see Figure 3). Thus,
CC(MUXn) ≤ 2N − 1 + CC(DECn) ≤ 3N +O(

√
N).

DECn

upper-bound construction of DECn

a0

a1
.
.
.

an−1

sel0

x0

∧

sel1

x1

∧

sel2

x2

∧
.
.
.

.

.

.

sel2n−2

x2n−2

∧

sel2n−1

x2n−1

∧

N parallel ANDs

∨

N − 1 ORs

MUXn(a, x)

Figure 3: Naïve MUXn-circuit construction (on input address bits a0, . . . , an−1 and data bits x0, . . . , x2n−1).
The decoder DECn (on inputs a0, . . . , an−1) emits a one-hot vector (sel0, sel1, . . . , sel2n−1). Each xi and seli
are fed into an AND-gate, and the results are combined by an OR-circuit to produce the final output.

The “overhead” of this construction is upper bounded by 2N − 1, but it turns out that we can also apply
a recursive construction for MUXn to obtain a better upper bound for the overhead. A better construction
proposed by Klein and Paterson [KP80] takes advantage of the downward self-reducibility of MUX. In
particular, the “overhead” of N costly gates can be reduced by using two smaller decoders in sequence,
selecting part of the address with respect to different blocks of arguments in turn (see Figure [REF]).
Namely, we have the following upper bound

9

Lemma 11 ([KP80]). CC(MUXn) ≤ 2N +O(
√
N), where N = 2n

Proof. Let r = ⌊n
2 ⌋, s = ⌈n

2 ⌉, and let Dr, Ds denote the circuits computing DECr, DECs respectively. We
have the following sequence of equations that uses Dr and Ds in sequence.

MUXn(a, x) = MUXn(b ◦ c, x) =
2r−1∨
i=0

2s−1∨
j=0

(seli(b) ∧ selj(c) ∧ xi·2r+j)

=

2r−1∨
i=0

seli(b) ∧

2s−1∨
j=0

(selj(c) ∧ xi·2r+j)


= MUXr

b,

2s−1∨
j=0

(selj(c) ∧ xi·2r+j) , for i = 0, · · · , 2r − 1


The circuit construction in this case is as follows (which is suggested by the middle equation): we first
use Ds to select the appropriate j given by its binary presentation c. Then, for this “fixed” j, the term
selj(c) ∧ xi·2r+j can “filter out” the input indices that do not correspond to j. In other words, at this stage,
we are asking the question: for all possible prefixes b ∈ {0, 1}r, what is the only correct suffix c? Thus, the
output of this stage is the remaining 2⌊n/2⌋ data variables x’s whose suffix of the its index in binary is the
string c. That said, we can ignore the inputs that do not meet this condition and proceed with selecting the
other half b. Finally, we use Dr to select the other half b and the expression b+2r ·c yields the correct index.
Thus, we obtain a recursive computation of MUXn in terms of MUXr as suggested by the last equation.

We will now analyze the circuit complexity of this construction. In particular,

• the first stage of selecting the suffix c for the data bit’s index in binary requires 2r · 2s = 2n ∧-gates
and 2r(2s − 1) = 2n − 2r ∨-gates. Specifically, there are 2r possible prefixes b ∈ {0, 1}r, and for each b,
we use 2s ∧-gates and 2s − 1 ∨-gates to select the correct c. Taking the complexity of Ds into account
(i.e. CC(DECs)), the total number of gates used in this stage is

CC(DECs) + 2 · 2n − 2r

• the second stage of selecting the prefix b for the data bit’s index in binary, given a “fixed” suffix c
requires 2r ∧-gates and 2r − 1 ∨-gates. Taking the complexity of Dr into account (i.e. CC(DECr)),
the total number of gates used in this stage is

CC(DECr) + 2 · 2r − 1

Note that the construction of this stage is exactly like the naive approach but for MUXr.

Therefore, by Lemma 4 and substituting N = 2n and r = ⌊n/2⌋, s = ⌈n/2⌉, the total complexity of this
construction is upper bounded by

CC(MUXn) ≤ CC(DECr) + CC(DECs) + 2 · 2n + 2r − 1 = 2N +O(
√
N)

10

DECn/2

upper-bound construction of DECn/2

c0

c1

.

.

.

cn/2−1

∧

∧

∧

.

.

.

√
N parallel AND-blocks

each has parallel
√
N AND-gates

{x
0n/2 ∗}

{x
0n/2−11 ∗}

{x
1n/2 ∗}

sel0(c)

sel1(c)

sel2(c)

sel
2n/2−1

(c)

.

.

.

∨.
.
.

x
0n/2 c

∨.
.
.

x
0n/2−11 c

∨.
.
.

x
1n/2 c

√
N parallel OR-trees

each tree has
√
N − 1 OR-gates

MUXn/2

Naive MUXn/2 construction

DECn/2

{ bi | i = 0, 1, . . . , n/2 − 1 }

MUX(a, x)

(a = b ◦ c)

Figure 4: One-level expansion of MUXn. The construction of MUXn/2-circuit on the right side follows the
naive construction as in Figure 3.

The same analysis can be used to show an upper bound for eMUXℓ with an exact count rather than bigO.
In particular, apply the upper bound in Theorem 5 for eDECℓ−1 , we obtain

CC(eMUXℓ) ≤ 2N +
√
N − 1 + 2 · CC(eDECℓ−1)

= 2N +
√
N − 1 + 2(

√
N + S(

√
N))

= 2N + 3
√
N + 2 · S(

√
N)− 1, where S(

√
N) =

log log
√
N−1∑

i=1

2i · (
√
N)1/2

i

which is consistent with [KP80]. However, Klein and Patterson pointed out that the analysis of Lemma 11
suggests a recursive construction which can give further improvement to the O(

√
N) term, and in particular,

decrease the coefficient of the term
√
N for eMUXℓ which we show in Section 4.2.1.

4.1.2 Lower Bound

In this section we will recount Paul’s lower bound for the multiplexing function (MUX) [Pau75]. We note
that Paul’s basis was {∧,⊕,¬} (with free ¬-gates and costly ∧,⊕-gates) which is different from our basis.
Still, the core ideas for the argument remain the same, an argument via Gate Elimination. Here, we simply
provide our refined presentation of Paul’s lower bound that aligns with our basis.

To this end, let us first quickly recall the main idea behind gate elimination: we take a circuit, substitute
a subset of inputs with constants, and then eliminate gates according to a set of basic simplification rules.
This is illustrated in the following example.

We categorize most of the rules into four categories below.

0 ∧ γ → 0 1 ∧ γ → γ γ ∧ ¬γ → 0 γ ∧ γ → γ

γ ∧ 0 → 0 γ ∧ 1 → γ ¬γ ∧ γ → 0

1 ∨ γ → 1 0 ∨ γ → γ γ ∨ ¬γ → 1 γ ∨ γ → γ

γ ∨ 1 → 1 γ ∨ 0 → γ ¬γ ∨ γ → 1

¬0 → 1 ¬¬γ → γ

¬1 → 0

(fixing) (passing) (resolving) (pruning)

11

Now, we define the set of i index selector functions as follows

Definition 12. Let f : {0, 1}n × {0, 1}2n be a Boolean function with two distinguished sets of input vari-
ables: a1, . . . an the set of address bits and x1, . . . x2n−1 be the set of data bits.

We define A(f) = {α ∈ {0, 1}n : f↾a=α ≡ x(α)} to be the set of selectable addresses of f .

We define Si, the set of i index selector functions, as:

Si = {f : {0, 1}n × {0, 1}2n → {0, 1} : |A(f)| ≥ i}

In words, the set Si contains Boolean functions f on (n+2n) input variables such that there are at least
i addresses a satisfying f(a, x) = x(a). Thus, it is easy to see that when i = 2n, we have f ≡ MUXn. With
this observation, we obtain the following lower bound on MUX.

Theorem 13. For the DeMorgan basis {∧,∨,¬} where ¬-gates are for free, and for all f ∈ Si, we have
CC(f) ≥ 2i− 2. Furthermore, CC(MUXn) ≥ 2N − 2 where N = 2n.

Proof. Let C be an optimal circuit for some fi ∈ Si (as in Definition 12) with i ≥ 1, we proceed with proving
the lower-bound by induction on i. The base case i = 1 is vacuous as 2 · 1− 2 = 0 and the circuit complexity
of all functions is non-negative.

For i = 2, we wish to show that CC(f2) ≥ 2 · 2 − 2 = 2 for some f2 ∈ S2. By Definition 12, there are
two selectable addresses α1, α2. By definition, f2 is a Boolean function such that there exists at least two
addresses α1, α2 ∈ {0, 1}ℓ such that f2(α1, x) = x(α1) and f2(α2, x) = x(α2). Since α1 and α2 corresponds to
two different data bits, we need at least one ∧-gate to select the appropriate appropriate data bit and one
∨-gate to combine the results of the selection (either one of them). Thus, CC(f2) ≥ 2.

For some i = k ≥ 1, assume that CC(f) ≥ 2k − 2 for any f ∈ Sk. Fix fk+1 ∈ Sk+1, we will show
that CC(fk+1) ≥ 2(k + 1) − 2. To this end, let C be an optimal circuit computing fk+1. By definition
of Sk+1 we know |A(fk+1)| ≥ k + 1. Consider any α ∈ A and it’s corresponding input x(α). We analyze
the following cases on the fan-out of x(α) and argue the desired lower-bound for |C| on all cases. First,
we note that fanout(x(α)) cannot be 0. Assume towards contradiction that fanout(x(α)) = 0. Since fk+1

depends on x(α) then x(α) must be the output of the circuit (i.e. fk+1 ≡ x(α) regardless of the value of a).
Since k ≥ 1, |A(fk+1)| ≥ 2 and thus there exists an a′ ∈ A that is distinct from A. However by definition,
fk+1↾a=α′ ≡ x(α′) ̸≡ x(α), a contradiction. We now analyze the remaining cases.

• Case 1: fanout(x(α)) > 1. In other words, x(α) is feeds into at least two other costly gates in C. Fix
b ∈ {0, 1} and consider C ′, the circuit obtained by moving any wires originating from x(α) in C to the
constant b and then performing standard gate elimination. We note that |C ′| ≤ |C| − 2 since x(α) had
at least two costly neighbors which would have been eliminated after our constant substitution.

Let f ′ : {0, 1}ℓ × {0, 1}N be the function C ′ computes. Observe that A(f ′) = A(f) \ {α}. By
the inductive hypothesis, 2k − 2 ≤ CC(f ′) ≤ |C ′| ≤ |C| − 2 ≤ CC(fk+1) − 2. Rearranging yields
CC(fk+1) ≥ 2k − 2 + 2 = 2(k + 1)− 2.

• Case 2: fanout(x(α)) = 1. This means that (¬)x(α′) is fed into exactly one costly gate in C. Let us call
this costly gate g. We first show that it is not the output of the circuit. If it were, notice that there is
some constant we can substitute in for x(α′) that would eliminate g via a fixing rule and leaving the
circuit constant. In other words, there exists a constant b ∈ {0, 1} such that fk+1↾x(α)=b is degenerate
with respect to all x(α′) for any α′ ̸= α and α ̸= α′. However, since |A(fk+1)| ≥ 2, there is at least one
other α′′ such that fk+1↾a=α′′,x(α)=b ≡ x(α′′) ̸= b.

Therefore, g is not the output gate and thus (¬)g feeds another costly gate h ∈ {∧,∨}. Substituting
the constant for x(α) which eliminates g via a fixing rule will then also eliminate h as well. Thus, we
obtain CC(fk+1) = |C| ≥ 2(k + 1)− 2 via the same argument as in case 2.

Since CC(fk+1) ≥ 2·2k+1−2 for both cases, the statement is true by the principle of mathematical induction.
Set i = 2n = N , we obtain CC(MUXn) ≥ 2N − 2.

12

4.2 On The Upper Bound and Lower Bound of eMUX

In this section, we establish a tighter upper bound for eMUXℓ on top of Klein and Patterson’s construction,
and then propose our conjecture on the lower bound and explain some difficulties proving it using Gate
Elimination alone. We begin with the upper bound.

4.2.1 Upper Bound

The analysis in Lemma 11 suggests a recursive construction for the circuit which can yield an improvement
for the 3

√
N term. In particular, we notice that we can split the string b into two halves and continue

“filtering” the remaining variables and repeat the process. With this observation, we establish the following
upper bound for eMUXℓ.

Theorem 14. Let ℓ ∈ N, CC(eMUXℓ) ≤ 2N +S(N)+3, where N = 22
ℓ

, and S(N) =
∑log logN−1

i=1 2i ·N1/2i

Proof. Let r = s = 2ℓ/2. We apply one more iteration of the recursive construction and observe the
improvement. In particular, we expand the expression for eMUXℓ similar to Lemma 11 further by splitting
b into b1 and c1 where each has length r/2 = 2ℓ/4, then use two subcircuits computing eDECℓ−2, one to fix
c1 and the other to process b1 accordingly.

eMUXℓ(a, x) = eMUXℓ(b1 ◦ c1 ◦ c0, x)

=

2r/2−1∨
i=0

2r/2−1∨
j=0

2s−1∨
k=0

(seli(b1) ∧ selj(c1) ∧ selj(c0) ∧ xi·2r+j·2r/2+k)

=

2r/2−1∨
i=0

seli(b1) ∧

2r/2−1∨
j=0

(
selj(c1) ∧

(
2s−1∨
k=0

(selk(c0) ∧ xi·2r+j·2r/2+k)

))
= eMUXℓ−2

b1,

2r/2−1∨
j=0

(
selj(c1) ∧

(
2s−1∨
k=0

(selk(c0) ∧ xi·2r+j·2r/2+k) , for i = 0, . . . , 2r/2 − 1

))
We will now analyze the circuit complexity of this construction. In particular,

• The first stage of fixing c0 is the same as the analysis in Lemma 11 which requires

CC(eDECℓ−1) + 2 · 22ℓ − 22
ℓ/2

• The second stage of selecting the c1-part for the index requires 2ℓ/2 ∧-gates and 2r/2(2r/2 − 1) ∨-gates
since this stage goes through all 2ℓ/2 indices to select the c1-part and combine. Taking CC(eDECℓ−2)
into account, the total number of gates used in this stage is

CC(eDECℓ−2) + 22
ℓ/2

+ 22
ℓ/4

(22
ℓ/4 − 1) = CC(eDECℓ−2) + 2 · 22ℓ/2 − 22

ℓ/4

• The third stage of selecting the b1-part for the index, given fixed c, c1-parts requires 2ℓ/4 ∧-gates and
2ℓ/4 − 1 ∨-gates. Taking the complexity CC(eDECℓ−2), the total number of gates used in this stage is

CC(eDECℓ−2) + 2 · 22ℓ/4 − 1

Substituting N = 22
ℓ

and apply Theorem 5 for CC(eDECℓ−1) and CC(eDECℓ−2), we obtain

CC(eMUXℓ) ≤ CC(eDECℓ−1) + 2 · 22ℓ − 22
ℓ/2

+ CC(eDECℓ−2) + 2 · 22ℓ/2 − 22
ℓ/4

+ CC(eDECℓ−2) + 2 · 22ℓ/4 − 1

= 2 · 22ℓ + 22
ℓ/2

+ 22
ℓ/4

+ CC(eDECℓ−1) + 2 · CC(eDECℓ−2)− 1

≤ 2N +N1/2 +N1/4 +N1/2 + S(N1/2) + 2N1/4 + 2 · S(N1/4)− 1

= 2N + 2N1/2 + 3N1/4 + S(N1/2) + 2 · S(N1/4)− 1

13

where S(M) =
∑log logM−1

i=1 2i · M1/2i . We can repeat the process for ℓ = log logN times and express the
upper bound of CC(eMUXℓ) as the following recurrence

T (N) =

{
3, if N = 2

T (N1/2) + 2N + S(N1/2), if N > 2

For the base case N = 2 (i.e. ℓ = 0), we have eMUX0 which is equivalent to multiplexing 2 data bits x0, x1.
We can construct the circuit by using a eDEC0-circuit which requires zero costly gate because it is simply
the input variable itself (a0) or its negation (a0). Then, we construct a0 ∧ x0, a0 ∧ x1 and combine their
results with an ∨-gate which yields a total of 3 costly gates.

∧ ∧

∨

x0 x1a0

¬

Figure 5: A circuit computing eMUX0

Justification for the case of N > 2 is based on the analysis of performing one recursive step as in Lemma
11 as shown below

CC(eMUXℓ) ≤ CC(eDECℓ−1) + (2N −
√
N)︸ ︷︷ ︸

selecting data bits based on an address slice stage

+CC(eMUXℓ−1)

≤
√
N + S(

√
N)︸ ︷︷ ︸

apply Theorem 5 for CC(eDECℓ−1)

+(2N −
√
N) + CC(eMUXℓ−1)︸ ︷︷ ︸

T (N1/2)

= 2N + S(N1/2) + T (N1/2) = T (N)

Now we unroll the recurrence for log logN steps (until the data bits domain shrink to the base case)

T (N) = T (N1/2) + 2N + S(N1/2)

= T (N1/4) + 2N1/2 + S(N1/4) + 2N + S(N1/2)

= T (N1/8) + 2N1/4 + S(N1/8) + 2N1/2 + S(N1/4) + 2N + S(N1/2)

. . .

= T (2) +

log logN−1∑
i=0

(2N1/2i + S(N1/2i+1

))

= 3 +

log logN−1∑
i=0

(2N1/2i + S(N1/2i+1

))

Note that we can simplify the expression further by simplifying
∑log logN−1

i=0 (2N1/2i + S(N1/2i+1

)). In
particular, for each i, we expand S(N1/2i+1

) =
∑log logN−i−2

j=1 2jN1/2i+1+j

. For readability, set L = log logN ,
then, we have

L−1∑
i=0

(2N1/2i + S(N1/2i+1

)) =

L−1∑
i=0

2N1/2i +

L−1∑
i=0

L−i−2∑
j=1

2jN1/2i+1+j

14

The index of the inner sum runs up to L− 1− 2 because by definition S(M) =
∑log logM−1

i=1 2i ·M1/2i , then
for M = N1/2i+1

, we have log logM − 1 = L− (i+ 1)− 1 = L− i− 2.
Re-index the double sum with u = i + j + 1, then since j ≥ 1, we have u − 1 − i ≥ 1 ⇐⇒ i ≤ u − 2.

Thus,
L−1∑
i=0

L−i−2∑
j=1

2jN1/2i+1+j

=

L−1∑
u=1

u−2∑
i=0

2u−i−1N1/2u

Rename the index of the single sum with u and factor out the first term of the sum, we have

L−1∑
i=0

2N1/2i = 2N +

L−1∑
u=1

2N1/2u

Putting everything together, we have

L−1∑
i=0

2N1/2i +

L−1∑
i=1

L−i−2∑
i=1

2jN1/2i+1+j

= 2N +

L−1∑
u=1

2N1/2u +

L−1∑
u=1

u−2∑
i=0

2u−i−1N1/2u

= 2N +

L−1∑
u=1

(
2 +

u−2∑
i=0

2u−i−1

)
N1/2u

Finally, we evaluate 2 +
∑u−2

i=0 2u−i−1 to determine the coefficient of N1/2u . To this end, re-index the sum
with k = u− i− 1, and since i = 0, 1, . . . , u− 2, we have k = u− 1, u− 2, . . . , 1. In other words,

2 +

u−2∑
i=0

2u−i−1 = 2 +

u−1∑
k=1

2k = 2 +
2(2u−1 − 1)

2− 1
= 2u (apply geometric series formula)

Thus, substitute L = log logN and S(N) =
∑log logN−1

i=1 2i ·N1/2i , we obtain the desired upper bound

T (N) = 3 + 2N +

log logN−1∑
u=1

2uN1/2u = 2N + S(N) + 3

If we unroll the first few terms in the sum S(N), we get 2N+2
√
N+O(4

√
N) which is a slight improvement

over Lemma 11 which is 2N + 3
√
N +O(4

√
N)

Remark 15. We think it can be beneficial for gaining a better understanding on how MUXn works for general
cases where n is either even or odd by getting an exact count of the upper bound for those cases. We think
each may differ by a few gates, but the general form of the upper bound should still be 2N +2

√
N +O(4

√
N).

4.2.2 Conjecture on the Lower Bound and the Optimal Circuit Structure

It is obvious that Paul’s 2N − 2 lower bound for MUXn also holds for eMUXℓ. However, we conjecture that
the lower bound can be made tighter and even close to the upper bound in Theorem 14. In particular, Paul’s
technique also leaves room for improvement as they only targeted the restrictions on the data bits x’s in
the argument, and no restriction on the address bits a’s. Still, one sticky point with the approach of gate
elimination via restricting the address bits is that it is not obvious whether any address bit ai shares a costly
gate with a data bit xi.

Thus, we believe that one possible step to get around this is to show that an optimal eMUX-circuit
requires an embedded optimal eDEC-circuit. If it is true, then restrictions on address bits could wipe out
more than two costly gates

Conjecture 16. Let ℓ ∈ N, then CC(eMUXℓ) ≥ 2N +O(
√
N).

15

One could also try showing the recursive construction of eMUX in Theorem 14 is optimal. But obviously,
proving that every optimal circuit has to be structured this way is non-trivial as it is something that standard
Gate Elimination does not capture very well. Gaining even a slight improvement over 2N−2 without digging
too deep into structural characterization would be a meaningful contribution, because it would require new
insights beyond Paul’s method. In particular, we can gain an improvement by showing that certain number
of address bits and data bits cannot be too “close” to one another in the circuit, i.e. they cannot share costly
gates or at least not too many, which one can exploit and argue, for the very least, a larger-than-2 constant
number of gates are eliminated.

References
[BMNW18] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph M Wintersteiger. “Pro-

gramming Z3”. In: International Summer School on Engineering Trustworthy Software Systems.
Springer, 2018, pp. 148–201.

[BS84] Norbert Blum and Martin Seysen. “Characterization of all optimal networks for a simultaneous
computation of AND and NOR”. In: Acta informatica 21.2 (1984), pp. 171–181.

[CO25] Bruno Cavalar and Igor Oliveira. “Boolean Circuit Complexity and Two-Dimensional Cover
Problems”. In: ACM Transactions on Computation Theory 17.2 (2025), pp. 1–23.

[DK11] Evgeny Demenkov and Alexander S. Kulikov. “An Elementary Proof of a 3n - o(n) Lower Bound
on the Circuit Complexity of Affine Dispersers”. In: Mathematical Foundations of Computer
Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26,
2011. Proceedings. Ed. by Filip Murlak and Piotr Sankowski. Vol. 6907. Lecture Notes in
Computer Science. Springer, 2011, pp. 256–265. doi: 10.1007/978-3-642-22993-0_25. url:
https://doi.org/10.1007/978-3-642-22993-0%5C_25.

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. “A
Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit Function”. In: 2016
IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). 2016, pp. 89–98.
doi: 10.1109/FOCS.2016.19.

[HR24] Justin Holmgren and Ron Rothblum. “Linear-size boolean circuits for multiselection”. In: 39th
Computational Complexity Conference (CCC 2024). Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik. 2024, pp. 11–1.

[ILMR02] Kazuo Iwama, Oded Lachish, Hiroki Morizumi, and Ran Raz. “An Explicit Lower Bound of
5n - o(n) for Boolean Circuits”. In: (2002).

[IM02] Kazuo Iwama and Hiroki Morizumi. “An Explicit Lower Bound of 5n - o(n) for Boolean Cir-
cuits”. In: Mathematical Foundations of Computer Science 2002, 27th International Sympo-
sium, MFCS 2002, Warsaw, Poland, August 26-30, 2002, Proceedings. Ed. by Krzysztof Diks
and Wojciech Rytter. Vol. 2420. Lecture Notes in Computer Science. Springer, 2002, pp. 353–
364. doi: 10.1007/3-540-45687-2_29. url: https://doi.org/10.1007/3-540-45687-
2%5C_29.

[KP80] Klein and Paterson. “Asymptotically optimal circuit for a storage access function”. In: IEEE
Transactions on Computers 100.8 (1980), pp. 737–738.

[LK21] SA Lozhkin and DE Khzmalyan. “The Complexity of the Standard Multiplexer Function in
a Class of Switching Circuits”. In: Computational Mathematics and Modeling 32.4 (2021),
pp. 478–489.

[Loz24] Sergei Andreevich Lozhkin. “On the depth of a multiplexer function with a small number of
select lines”. In: Mathematical Notes 115.5 (2024), pp. 748–754.

[LY22] Jiatu Li and Tianqi Yang. “3.1n - o(n) circuit lower bounds for explicit functions”. In: STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20
- 24, 2022. Ed. by Stefano Leonardi and Anupam Gupta. ACM, 2022, pp. 1180–1193. doi:
10.1145/3519935.3519976. url: https://doi.org/10.1145/3519935.3519976.

16

https://doi.org/10.1007/978-3-642-22993-0_25
https://doi.org/10.1007/978-3-642-22993-0%5C_25
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/3-540-45687-2%5C_29
https://doi.org/10.1007/3-540-45687-2%5C_29
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1145/3519935.3519976

[Pau75] Wolfgang J Paul. “A 2.5 n-lower bound on the combinational complexity of Boolean functions”.
In: Proceedings of the seventh annual ACM symposium on Theory of computing. 1975, pp. 27–
36.

[Red73] NP Red’kin. “Proof of minimality of circuits consisting of functional elements”. In: Systems
Theory Research: Problemy Kibernetiki (1973), pp. 85–103.

[Sat81] Jürgen Sattler. “Netzwerke zur simultanen Berechnung Boolescher Funktionen (Ausführliche
Kurzfassung)”. In: Theoretical Computer Science: 5th GI-Conference Karlsruhe, March 23–25,
1981. Springer. 1981, pp. 32–40.

[SC98] JE Savage and Models Of Computation. Exploring the power of Computing. 1998.

[Sch74] Claus-Peter Schnorr. “Zwei lineare untere Schranken für die Komplexität Boolescher Funk-
tionen”. In: Computing 13.2 (1974), pp. 155–171. doi: 10.1007/BF02246615. url: https:
//doi.org/10.1007/BF02246615.

[Sto77] Larry J. Stockmeyer. “On the Combinational Complexity of Certain Symmetric Boolean Func-
tions”. In: Math. Syst. Theory 10 (1977), pp. 323–336. doi: 10.1007/BF01683282. url: https:
//doi.org/10.1007/BF01683282.

[Weg87] Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

[Wig93] Avi Wigderson. “The fusion method for lower bounds in circuit complexity”. In: Combinatorics,
Paul Erdos is Eighty 1.453-468 (1993), p. 68.

[Zwi91] Uri Zwick. “A 4n lower bound on the combinational complexity of certain symmetric boolean
functions over the basis of unate dyadic Boolean functions”. In: SIAM Journal on Computing
20.3 (1991), pp. 499–505.

17

https://doi.org/10.1007/BF02246615
https://doi.org/10.1007/BF02246615
https://doi.org/10.1007/BF02246615
https://doi.org/10.1007/BF01683282
https://doi.org/10.1007/BF01683282
https://doi.org/10.1007/BF01683282

	Introduction
	Background & Motivation
	Related Work
	Our Contribution
	Discussion & Next Steps

	Preliminaries
	Minterms, Disjunctive Normal Form (DNF) & Boolean Circuits
	Positional Decoder & Multiplexer

	On (Exponent) Positional Decoder
	Previous Work on DEC
	On the upper bound and lower bound of eDEC
	Upper Bound
	Conjecture on the Lower Bound and Optimal Circuit Structure

	On (Exponent) Multiplexer
	Previous work on MUXn
	Upper Bound
	Lower Bound

	On The Upper Bound and Lower Bound of eMUX
	Upper Bound
	Conjecture on the Lower Bound and the Optimal Circuit Structure

