
Simple Circuit Extensions for XOR in PTIME1

Marco Carmosino #�2

MIT-IBM Watson AI Lab, Cambridge, MA, USA3

Ngu Dang #4

Boston University, Boston, MA, USA5

Tim Jackman #�6

Boston University, Boston, MA, USA7

Abstract8

The Minimum Circuit Size Problem for Partial Functions (MCSP∗) is hard assuming the Exponential9

Time Hypothesis (ETH) (Ilango, 2020). This breakthrough hardness result leveraged a charac-10

terization of the optimal {∧,∨,¬} circuits for n-bit OR (ORn) and a reduction from the partial11

f -Simple Extension Problem where f = ORn. It remains open to extend that reduction to show12

ETH-hardness of total MCSP. However, Ilango observed that the total f -Simple Extension Problem13

is easy whenever f is computed by read-once formulas (like ORn). Therefore, extending Ilango’s14

proof to total MCSP would require one to replace ORn with a slightly more complex but similarly15

well-understood Boolean function.16

This work shows that the f -Simple Extension problem remains easy when f is the next natural17

candidate: XORn. We first develop a fixed-parameter tractable algorithm for the f -Simple Extension18

Problem that is efficient whenever the optimal circuits for f are (1) linear in size, (2) polynomially19

“few” and efficiently enumerable in the truth-table size (up to isomorphism and permutation of20

inputs), and (3) all have constant bounded fan-out. XORn satisfies all three of these conditions.21

When ¬ gates count towards circuit size, optimal XORn circuits are binary trees of n− 1 subcircuits22

computing (¬)XOR2 (Kombarov, 2011). We extend this characterization when ¬ gates do not23

contribute the circuit size. Thus, the XOR-Simple Extension Problem is in polynomial time under24

both measures of circuit complexity.25

We conclude by discussing conjectures about the complexity of the f -Simple Extension problem26

for each explicit function f with general circuit lower bounds over the DeMorgan basis. Examining the27

conditions under which our Simple Extension Solver is efficient, we argue that multiplexer functions28

(MUX) are the most promising candidate for ETH-hardness of a Simple Extension Problem, towards29

proving ETH-hardness of total MCSP.30

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-31

tation → Fixed parameter tractability32

Keywords and phrases Minimum Circuit Size Problem, Circuit Lower Bounds, Exponential Time33

Hypothesis34

mailto:mlc@ibm.com
https://orcid.org/0009-0007-1118-1352
mailto:ndang@bu.edu
mailto:tjackman@bu.edu
https://orcid.org/0000-0002-2293-5670

2 Simple Circuit Extensions for XOR in PTIME

1 Introduction35

Circuits model the computation of Boolean functions on fixed input lengths by acyclic wires36

between atomic processing units — logical “gates.” To measure the circuit complexity of37

a function f , we first fix a set of gates B — called a basis. This work studies circuits over38

the following basis: fan-in 2 AND, fan-in 2 OR, and fan-in 1 NOT gates. We consider two39

complexity size measures µD and µR, which count only the binary gates and the total number40

of gates in a circuit respectively. We will refer to B equipped with these two complexity41

measures as D, the DeMorgan basis, and R, the Red’kin basis respectively1.42

Basic questions about these models have been open for decades; we cannot even rule43

out the possibility that every problem in NP is decided by a sequence of linear-size circuits44

(see page 564 of [22]). Despite this, the ongoing search for circuit complexity lower bounds45

has fostered rich and surprising connections between cryptography, learning theory, and46

algorithm design [16, 12, 37, 6, 36, 17]. The Minimum Circuit Size Problem (MCSP, [23])47

appears in all of these areas, asking:48

Given an n-input Boolean function f as a 2n-bit truth table, what is the minimum s49

such that a circuit of size s computes f ?50

The existential question — do functions that require “many” gates exist? — was solved51

in 1949: Shannon proved that almost all Boolean functions require circuits of near-trivial252

size Ω(2n

n) by a simple counting argument [40]. The current best answer to the explicit53

question in the DeMorgan basis — is such a hard function in NP? — is a circuit lower bound54

of 5n− o(n), proved via gate elimination [21]. This is far from the popular conjecture that55

NP-complete problems require super-polynomial circuit size.56

The algorithmic question — is MCSP NP-hard? — remains open after nearly fifty years57

[41], even under strong complexity assumptions such as the Exponential Time Hypothesis58

(ETH). But, many natural variants of MCSP have been proven NP-hard unconditionally.59

For instance, DNF-MCSP [31], MCSP for OR-AND-MOD Circuits [15], and MCSP for multi-60

output functions [20] are now known to be NP-hard. Furthermore, MCSP for partial functions61

(MCSP∗) [18] is hard under the Exponential Time Hypothesis (ETH), later extended to62

unconditional NP-hardness under randomized reductions [14].63

Our work studies the feasibility of generalizing Ilango’s technique for ETH-hardness of64

MCSP∗ to total MCSP. In particular, underlying Ilango’s proof is a related decision problem65

about circuit complexity of Boolean simple extensions which we call the f -Simple Extension66

Problem (f -SEP).67

▶ Definition (Simple Extension). Let f be a Boolean function that depends on all of its n68

variables. A simple extension of f is either f itself or a function g on n + m variables69

satisfying:70

1. g depends on all of its inputs.71

2. CC(g) — the circuit-size complexity of g — is CC(f) +m.72

3. There exists a setting k ∈ {0, 1}m, a key, such that for all x ∈ {0, 1}n, g(x, k) = f(x).73

We define the f -Simple Extension decision problem for total functions below.374

1 We will specify a basis if a statement pertains to only that basis. If the basis is not specified, then the
statement applies to both D and R.

2 From using a lookup table.
3 For partial function f -Simple Extension (f -SEP∗), g is a partial function and we must determine whether

any completion of g is a simple extension of f .

M. Carmosino, N. Dang, and T. Jackman 3

▶ Problem (The f -Simple Extension Problem). Let f be a sequence of Boolean functions75

{fn}n∈N such that each fn depends on all of its n inputs. The f -Simple Extension Problem76

is defined as follows: Given n ∈ N and tt(g)—the truth table of a binary function g—decide77

whether g is a simple extension of fn.78

For a fixed f whose truth table can be efficiently computed and whose exact circuit79

complexity is known, f -SEP reduces to a single call to an MCSP oracle, because checking80

whether g is a non-degenerate extension of f can be done in polynomial time via brute force81

(given the truth table of g). This observation gives rise to an MCSP-hardness proof framework:82

if one can identify an explicit function f for which deciding the f -Simple Extension Problem83

is hard, then MCSP is also hard.84

This framework was implicitly used in Ilango’s hardness proof for MCSP∗ [18], i.e. reducing85

an ETH-hard problem to deciding whether a partial function is a simple extension of f = OR.86

We make this observation explicit in Section 2. Now, a natural question arises: can one87

extend this idea to total MCSP and prove MCSP ̸∈ P assuming ETH? Ilango suggested that88

“the most promising approach is to skip MCSP∗ entirely and extend our techniques to89

apply to MCSP directly.” - Rahul Ilango, SIAM J. of Computing, 202290

However, optimal circuits for OR are so well-structured that deciding whether a total91

function is a simple extension of it is actually easy (see the discussion in Section 1.2.2 in92

[18]). Minimal OR circuits are read-once formulas: each of the input is read exactly once and93

each internal gate has fan-out 1. Simple extensions of it will also be computed by read-once94

formulas, and deciding whether a given Boolean function has a read-once formula is easy95

[2, 13]. Therefore,96

“the missing component in extending our results to MCSP is finding some function f97

whose optimal circuits we can characterize but are also sufficiently complex.” - Rahul98

Ilango, SIAM J. of Computing, 202299

Could simply replacing OR with some read-many f — perhaps XOR, which enjoys tight100

bounds and a full characterization — allow Ilango’s technique to prove MCSP is ETH-hard?101

For XOR, we show the answer is a resounding no. For other potential functions, the answer102

is more ambiguous. We will discuss prospects for alternative hard functions in Section 1.3.103

1.1 Our Results and Contributions104

We narrow the field of candidate functions for such a hardness proof by developing a fixed-105

parameter tractable algorithm for the f -Simple Extension problem (Section D.4). Such an106

algorithm is surprising, because f -Simple Extension is a meta-complexity problem about107

general circuits and our algorithm works in regimes where we know explicit circuit lower108

bounds. Often, the combinatorial facts used in lower bounds imply a hardness result for109

the appropriately-restricted meta-complexity problem (e.g., DNF-MCSP)! Nonetheless, we110

obtain:111

▶ Main Result. The f-Simple Extension Problem is in P whenever112

1. CC(f) — the circuit-size complexity of f — is linear,113

2. the maximum fan-out over all optimal circuits for f is constant, and114

3. the optimal4circuits for f , up to isomorphism and permutation of its n inputs, are115

efficiently enumerable and polynomial few with respect to the length of its truth table: 2n.116

4 In D, we require a circuit to be normalized for it to be optimal. In particular, it cannot contain any
double-negations. This prevents every function from having an infinite number of optimal circuits.

4 Simple Circuit Extensions for XOR in PTIME

To apply our main result and discount a particular f , we require an exact specification of117

its optimal circuits. The next natural candidate — XOR, a simple function whose circuits118

are neither read-once nor monotone — has been well studied. Beyond enjoying exact size119

bounds [39, 35], XOR is one of the few functions whose structure has been studied; it is120

known that, in R, all optimal XORn circuits are binary trees of n− 1 XOR2 sub-blocks [25].121

We extend this structural analysis to D in Section E, obtaining122

▶ Main Lemma ([25], Theorem 37). Optimal XORn circuits consist of (n − 1) (¬)XOR2123

sub-circuits.124

Each XORn circuit can therefore be characterized using binary trees with n leaves, of125

which there are Cn−1 = O(2n), where Cn is the nth Catalan number [42]. As there are a126

finite number of optimal normalized (¬)XOR2 circuits, combining this characterization and127

our main result to immediately yields128

▶ Main Corollary. The XOR-Simple Extension Problem is in P.129

Applying Ilango’s technique successfully will itself require a deeper study of circuit130

minimization. This is not merely because any hardness proof needs to bypass our algorithm;131

knowledge of circuit lower-bounds and optimal constructions for the base function is intrinsic132

to the reduction itself. We make this connection explicit in Section 2, identifying that133

▶ Main Observation. f -SEP∗ is ETH-hard under Levin reductions.134

Lastly, in Section 1.3, we inspect each explicit function f that enjoys DeMorgan circuit135

lower bounds and argue how plausible it is that the optimal set of f circuits avoids our Main136

Result — a roadmap towards ETH-hardness of total MCSP via f -SEP.137

1.2 Related Work138

(Non-)hardness of MCSP Variants. Hirahara showed that Partial MCSP is unconditionally139

NP-hard under randomized reductions [14]. Extending his breakthrough result is another140

approach towards hardness of total MCSP. Though promising, this also faces challenges: under141

believable cryptographic conjectures (indistinguishability obfuscation and subexponentially-142

secure one-way functions), GapMCSP is not NP-complete under randomized Levin-reductions143

[32]. Such reductions appear to suffice for Hirahara’s proofs, so one may need new ideas to144

obtain NP-hardness of total MCSP via his approach.145

We bypass the issue by working towards hardness of total MCSP under ETH — a stronger146

assumption than P ̸= NP. Even so, ETH-hardness of total MCSP remains a major open147

problem, and there are no known barriers to extending Ilango’s approach in this setting. The148

reader can decide for themselves if our algorithm constitutes such a barrier or not.149

Optimal Circuit Structures. Knowing the lower-bounds of some explicit Boolean functions150

f , a natural question to ask is: What about the structure of every optimal circuit computing151

f? For some functions and bases, this is easy to answer: minimal Red’kin circuits for ORn are152

binary trees of ∨ gates. For even slightly more complex functions, structural characterization153

seems to require intricate and exhaustive case analysis. Some of the earliest work on this154

question include [38] and [5] which investigated when optimal circuits for certain 2-output155

Boolean functions must compute each output independently. More recently, Kombarov156

extended the characterization of XOR circuits to other complete bases when NOT-gates are157

counted [26].158

M. Carmosino, N. Dang, and T. Jackman 5

1.3 Discussion and Future Directions159

A Remark on Bases. Both R and D are compatible with Ilango’s proof of ETH-hardness160

of MCSP∗. That proof relied on functions whose optimal {∧,∨,¬}-circuits are read-once161

monotone formulas. There it was irrelevant whether ¬ gates contribute to size: those circuits162

simply did not contain negations. However, when we move to more complex functions like163

XOR, negations must appear in the optimal circuits and as such, we must decide how to164

treat them.165

In the search for non-linear circuit lower bounds, the choice between µR and µD is largely166

irrelevant: the two complexity measures the same up to a small constant factor. However, as167

we discuss in Section 2, Ilango’s technique requires knowledge of the structure of optimal168

circuits. In this setting, there is not necessarily as strong connection between the two bases.169

By extending Kombarov’s characterization of XOR circuits in R to D in Section E, we show170

for that particular function, optimal circuits are structurally similar in both bases. But, for171

other functions, this may well not be the case. It seems likely that negations could enable172

a function’s optimal circuits to greatly vary under the two complexity measures. Indeed,173

negations can greatly increase a problems complexity: [4] showed that a Boolean function174

learning problem became difficult only once the number of ¬ gates exceeded a small threshold.175

By considering both bases in this work, we limit how negations impact the complexity of176

f -SEP. We show that they do not greatly increase the complexity of the simple extensions177

themselves: in Section C, we find that simple extensions under both complexity measures178

are highly structured. If a future hardness reduction relies on negations, their role will be in179

increasing the structural complexity of the underlying base function, either by increasing the180

number of distinct optimal circuits, or by enabling non-constant fan-out in a base circuit.181

A Roadmap for ETH-Hardness Proofs via Simple Extensions To prove f -SEP is ETH-hard182

we will need a Boolean function whose optimal circuits are more complex and/or varied183

than XOR. Specifically, these circuits must either (1) be superlinear in size, (2) require184

non-constant fanout, or (3) be sufficiently numerous. Superlinear bounds seem beyond185

current techniques—the most fruitful of which, gate elimination, seems unlikely to be able to186

prove lower bounds above even 11n for wide classes of functions [11]. As such, it seems more187

sensible to identify Boolean functions which violate the latter conditions. However, structural188

characterization of the optimal circuits is also hard, and seems to require very tight circuit189

bounds. Indeed, our DeMorgan basis characterization of XOR repeatedly exploited Schnorr’s190

exact 3(n− 1) bound for XORn [39]. Regardless, this greatly narrows the prospective class of191

functions from the original specification: “more complex than read-once formulas.” However,192

the known explicit functions with tight DeMorgan bounds that may violate these conditions193

are few and far between. In Table 15, we summarize these explicit functions and assess how194

suitable they are for ETH-hardness of f -Simple Extension Problem.195

Observe that every function besides XOR in the table has a (small) gap between the196

circuit lower and upper bound, and the “Ω(1) Fanout” column ends with a question mark197

(?). This is because XOR is the only listed function for which we know the exact circuit198

complexity and an optimal circuit characterization. The other “Ω(1) Fanout” entries above199

are extrapolated by assuming that their respective DeMorgan upper bound constructions200

5 Some of listed bounds are in U2, the basis consisting of every binary Boolean function besides XOR2
and ¬XOR2. For non-degenerate functions besides f(x) = ¬x, U2 and D are equivalent in terms of size.
The multiplexer lower bound of [33] is for the B2, the basis of all binary Boolean functions, but it also
serves as the best known lower bound in D.

6 Simple Circuit Extensions for XOR in PTIME

Table 1 Explicit Functions with Circuit Lower Bounds in the DeMorgan Basis

Function(s) Lower Bound Upper Bound Ω(1) Fanout Source(s)
XOR 3(n − 1) = 3(n − 1) NO [39]
Sum Mod 4 4n−O(1) 5n−O(1) NO? [44]
Sum Mod 2k 4n−O(1) 7n− o(n) NO? [44]
Multiplexer 2(n− 1) 2n + O(

√
n) YES? [34, 24]

Well-Mixed 5n− o(n) poly MAYBE? [27, 21]
Weighted Sum of Parities 5n− o(n) 5n + o(n) YES? [1]

are optimal. For instance, Zwick conjectured that optimal circuits computing the Sum Mod201

4 (MOD4) function are “shaped like” ternary full-adder blocks [44]. If this conjecture is202

true, then MOD4-Simple Extension can be solved in poly-time since such circuits satisfy203

the properties of our Main Lemma. Since the MOD2k functions are computed similarly, we204

conjecture that exactly characterizing the optimal circuits for Zwick’s functions would yield205

efficient Simple Extension Solvers — not a proof of ETH-hardness for total MCSP.206

However, we do have linear lower bounds for functions whose best known constructions207

have non-constant fanout: the multiplexing function (MUX) contains sub-circuits which are208

reused a logarithmic number of times [24]. In contrast to XOR however, the bounds for MUX209

are not tight. The best lower bound is 2(n− 1), given by Paul [33].210

Future Directions. The most obvious next step is to either (1) obtain total characterization211

of the Multiplexer or (2) extend our Simple Extension Solver to handle circuits with super-212

constant fanout. Neither of these tasks seems easy, but also they have not been subject to213

intensive research the way that super-linear circuit lower bounds and hardness of MCSP214

have. We hope that connecting these kinds of results to ETH-hardness of MCSP provides215

new perspective and motivation.216

Ilango’s MCSP∗ result has also formed the basis for several hardness results in other217

models of computation such as formulas and branching programs [19, 9, 10]; could one show218

that the simple extension problem for formulas or branching programs is hard? These other219

models of computations may prove easier to work with than unrestricted circuits. They also220

enjoy superlinear lower bounds thereby bypassing our algorithm. Investigating the simple221

extension problem in these settings would provide insight into the feasibility of the approach222

in the circuit setting.223

We conclude this section with a discussion of the simple extension problem in general.224

Despite having only been studied as a tool for proving hardness of MCSP thus far, it may be of225

independent interest. For example, while hardness of time-bounded Kolmogorov complexity226

is tightly connected to the existence of one-way functions, hardness of MCSP has much weaker227

quantitative connections [28, 36]. The f -Simple Extension Problem is more “structured”228

than MCSP and easily reduces to it, so hardness assumptions about f -Simple Extension229

Problem are stronger. Could such assumptions imply one-way functions?230

1.4 Proof Techniques231

1.4.1 The Structure of Optimal XOR Circuits232

Similar to [25], we show that every optimal (¬)XORn circuit over the DeMorgan basis233

partitions into trees of (n− 1) sub-circuits computing (¬)XOR2 — even when NOT gates are234

free. The structure of optimal circuits computing the XOR-function is a crucial ingredient for235

M. Carmosino, N. Dang, and T. Jackman 7

∧
¬

∧∨

x1 x2

XOR2

∨
¬

∨∧

x1 x2

¬XOR2

∨
∧ ∧

¬ ¬

x1 x2

XOR2

· · ·

Red’kin Basis

DeMorgan Basis

⊕

≡
≡

⊕ ⊕

XOR6

≡
≡ ≡

⊕ ⊕

¬XOR6

· · ·

DeMorgan & Red’kin Bases

Figure 1 An example of the binary tree structure of optimal circuits computing XOR6. The
left sub-figure depicts possible (¬)XOR2 blocks in the Red’kin and DeMorgan Bases. Notice each
optimal Red’kin circuit is an optimal DeMorgan circuit, but not vice-versa. The right sub-figure
depicts that the arrangement of XOR2 blocks that make up XOR6 circuits are shared by both bases.

ruling it out as a candidate function. We carry out an elementary but intricate case analysis236

of restricting and eliminating gates from optimal XOR circuits. Essentially we extract more237

information from the proof of Schnorr’s lower bound by using it to identify “templates”238

that must be found in any optimal XOR circuit. We push this process to the limit, fully239

characterizing the “shape” of all such circuits. Specifically,240

Schnorr’s proof is essentially a technical lemma which says that any one-bit restriction will241

eliminate at least 3 costly gates [39]. This means that at the bottom level of every optimal242

XOR circuit, any variable must be fed into two distinct costly gates, and furthermore, one243

of these two must be fed into another costly gate. Any deviation from these properties will244

violate essential properties of the XOR-function, such as “XOR depends on all the input245

bits.” Via a basic inductive argument and the fact that XOR is downward self-reducible,246

Schnorr’s lower bound follows: CC(XORn) ≥ 3(n− 1).247

Schnorr’s proof leaves the local structure of the optimal circuit computing XOR “open.”248

Namely, it does not provide any information about the other inputs of the costly gates249

or where their outputs connect to the rest of the circuit, since we consider fan-in 2 and250

unbounded fan-out. However, we know that XOR circuit has a matching upper-bound of251

3(n− 1). In particular, this means each one-bit restriction cannot remove more than 3252

gates. We also know that each variable in optimal XOR-circuits must be read twice.253

We leverage these two properties to show that in every optimal XOR circuit, any two254

distinct input variables xi and xj must be fed into a block B as shown in the left sub-figure255

of Figure 1. Specifically, we argue that any deviations from the block will violate at256

least one of the properties via exhaustive case analyses of gate elimination steps. Finally,257

we argue that this block B must compute either XOR2 or ¬XOR2 and apply a basic258

inductive argument to obtain the desired structural characterization of any optimal circuit259

computing XORn as depicted in the right sub-figure of Figure 1.260

Besides the linear size for optimal circuits computing XOR, our structural theorem yields two261

more properties that rule out XOR as a candidate function for MCSP-hardness via Simple262

Extension. That is, for optimal circuits computing XORn, (1) the maximum fan-out is a263

constant, and (2) the number of such optimal circuits up to permutation of variables, is 2O(n).264

8 Simple Circuit Extensions for XOR in PTIME

Algorithm 1 Informal Simple Extension Solver, taking input n ∈ N, g ∈ Fn+m

1: if there is no key to f in g or g is degenerate then
2: return False
3: ▷ If the above tests pass, then g is a non-degenerate extension of f . It remains to check

simplicity.
4: for each isomorphism class C of open optimal circuits for f do
5: F ← an arbitrary element of C with all gates labelled in topological order
6: label the open nodes of F by an arbitrary permutation of x1, . . . , xn

7: for each reverse elimination E that adds exactly m costly gates to F do
8: G̃← Decode(F,E)
9: if tt(G̃) ≃ tt(g) then ▷ Test using the procedure of Theorem 26.

10: return True
11: return False

1.4.2 A Fixed-Parameter Tractable Simple Extension Solver265

It is easy to see that the approach of solving the Simple Extension Problem for XORn via266

brute-forcing over all possible circuits of size CC(f) + m is super-polynomial in terms of267

the length of the input truth-tables. Using the following ingredients, we design Algorithm268

1 below, a Fixed-Parameter Tractable (FPT) algorithm for the Simple Extension problem269

that depends on the following three parameters: (1) the number of optimal circuits for f (up270

to isomorphism & permutation of variables), (2) the maximum fanout of any node in any271

optimal circuit for f , and (3) CC(f).272

Structured Simple Extension Circuits. By analyzing the behavior of optimal simple ex-273

tension circuits under gate elimination, we are able to characterize the structure of every274

optimal circuit computing a simple extension. By definition, if g is a simple extension of275

f then there are restrictions of g’s added variables (called extension variables and denoted276

yi) that yield f . We call such a restriction a key to f in g. We first show that circuits277

obtained by partially restricting with a key are themselves optimal simple extension circuits for278

intermediate extensions. Building on this, we then develop convenient all-stops restrictions279

that order substitutions and simplification steps with the following properties: (1) single-bit280

substitutions from this key in the given order eliminate exactly one costly gate at each step, (2)281

there exists such an all-stops restriction for any optimal circuit computing a simple extension282

(Lemma 17).283

Combining these tools, we inductively show a robust structure arises in optimal simple284

extension circuits: each extension variable occurs in an isolated read-once subformula that285

depends only on other extension variables (referred to to as the Y-trees). Formally,286

▶ Definition 1 (Y-Tree Decomposition). Let G be a circuit with two distinguished sets of287

inputs: base variables X and extension variables Y . A Y -Tree Decomposition of G is a set288

of triples ⟨γ, b, T ⟩ where γ—referred to as a combiner—is a costly gate of G, bit b ∈ {0, 1}289

designates an input of γ, and T is a sub-circuit of G rooted at the b child of γ such that290

1. Each T is a read-once formula in only extension variables Y .291

2. Each yi ∈ Y appears in at most one T .292

3. Each T is isolated in G — gate γ is the unique gate reading from T , and it only reads293

the root of T .294

4. The sub-circuit of G rooted at the ¬b child of γ contains at least one X variable.295

M. Carmosino, N. Dang, and T. Jackman 9

Cf

x1, x2, x3, , xn

T 1
Y

T 2
Y

T 3
Y

Cg

3⊔

i=1

Inputs(T i
Y) =

{y1, y2, . . . , ym}

Figure 2 An example of a Y-Tree Decomposition of size three.

The size of a decomposition is the number of tuples — Y -trees and their associated296

combiner gates — present in the decomposition. The weight of a Y -tree decomposition is the297

number of extension variables that are read in some T . We say a Y -tree decomposition is total298

if its weight is |Y |, i.e. every extension variable appears. An example Y-tree decomposition299

of size three is depicted in Figure 2, where the shaded circles represent the circuity around300

each combiner γ connecting each TY to the rest of the circuit.301

When gate elimination is performed with a total key, these added Y-trees and their302

combiners are pruned to reveal an embedded optimal circuit for the base f function. We get303

the following structural insight: every optimal simple extension circuit has a total Y -tree304

decomposition. This decomposition forms the basis of our strategy: we brute force over every305

optimal base circuit and try to “splice in” every possible Y -tree.306

Encoding & Decoding the “Grafts” in a Y-Tree Decomposition. To ensure we can307

efficiently construct these candidate simple extension circuits, we devise an encoding scheme308

and corresponding decoding algorithm which efficiently captures the difference in local309

neighborhoods after each new Y-tree is spliced on top of an existing gate or input. Our final310

encoding must be O(n+m) bits long to ensure brute-force runs in 2O(n+m). We present our311

encoding as a communication problem to clarify the overhead and constraints involved.312

Suppose g is a simple extension of f and Alice knows G, an optimal circuit for g. Alice313

can obtain an optimal circuit F computing f by simply restricting the y-variables of G with314

a key and performing gate elimination. Now consider the following communication problem:315

Bob (i.e., line 5 of Algorithm 1) knows F , and Alice would like to send him G using as316

few bits as possible. Because g is a simple extension of f , Alice can compute the Y -tree317

decomposition of optimal circuit G. The idea is to send Bob a sequence of instructions that318

tell him exactly how to graft each Y-Tree of G onto the gates of F , where all information is319

encoded relative to isomorphism-invariant properties of F .320

Speeding Up Via Truth-table Isomorphism. Brute-forcing over the total encodings de-321

scribed above is still incredibly inefficient. Since each Y -tree is a read-once formula in the322

added m variables there are least Cm−1 ·m! such explicit Y -trees, where Ca is the ath Catalan323

number [42]. The dominating term—m!—comes from permuting the labels of the variables.324

The same issue arises if our base function f is symmetric: the number of optimal f circuits325

is Ω(n!).326

We sidestep this issue and drastically improve the speed of brute-force search. If we327

“incorrectly” assign variables in the base circuit or in the Y-trees, the result is a circuit for328

10 Simple Circuit Extensions for XOR in PTIME

a Boolean function that is truth-table isomorphic to g, i.e. their truth-tables are the same329

up to a permutation of the inputs. If h and g are truth-table isomorphic then they have330

the same circuit complexity. Thus it suffices to brute-force over unlabeled (“open”) base331

circuits and Y -trees, assign variables to inputs arbitrarily, generate each circuit’s truth table,332

and check if it is truth-table isomorphic to g. This final step is feasible since truth-table333

isomorphism testing can be done in polynomial time [30].334

This results in our final algorithm, which runs in time O(|L| · 2O(ℓ(s+m))) where |L| is the335

number of optimal base f circuits up to permutation of variables, ℓ is the maximum fanout336

in any of those base circuits, and s = CC(f). As discussed above, for XOR these parameters337

are all sufficiently small and hence XOR-Simple Extension is in P.338

1.4.3 Paper Outline339

The paper is laid out as follows. Section 2 explores the implicit reduction present to f -SEP in340

the ETH-hardness proof for MCSP∗ in [18]. This discussion yields our Main Observation and341

motivates our study of f -SEP and circuit structures. It, in conjunction with this introduction,342

constitutes an extended abstract of our paper.343

Appendix A and Appendix B formally define circuits and gate elimination respectively.344

In Appendix C, we establish that every optimal circuit computing simple extensions are345

highly structured: they can be decomposed into Y -trees. This observation forms the basis of346

our Main Result, a fixed parameter tractable algorithm for f -SEP, in Appendix D. Finally,347

in Appendix E, we extend Kombarov’s characterization of optimal XOR circuits in R to D,348

in order to apply our Main Theorem to XOR-SEP.349

The dependence between sections varies. For example, Appendix E is independent of the350

f -SEP material like Section 2 and Appendix C. To aid the reader, we provide a reading order351

in Figure 3.

Section 1 Section 2.1 Section 2.2

Extended Abstract

Appendix A Appendix B
Appendix C

Appendix E

Appendix D

Figure 3 The structure of our paper. Sections 1 and 2 form an extended abstract. An incoming
arrow indicates that the material depends on the previous section.

352

2 Revisiting ETH hardness for MCSP∗ via Simple Extensions353

We re-examine the proof that MCSP∗ is ETH-hard from [18]. Our aim is to better understand354

the reduction from 2n× 2n Bipartite Permutation Independent Set (BPIS) to the Partial f355

Simple Extension problem (f -SEP∗).356

2.1 The f-Simple Extension Problem357

We give formal definitions of simple extensions and its associated decision problem. We first358

define non-degeneracy of a Boolean function.359

M. Carmosino, N. Dang, and T. Jackman 11

▶ Definition 2. A function f ∈ Fn, the set of Boolean functions on n variables, depends360

on its ith variable, xi, if there exists an input α ∈ Fn such that f(α) ̸= f(α⊕ ei), where ei361

denotes the Boolean vector that is 0 everywhere except for a 1 at index i and ⊕ is bitwise XOR.362

If f depends on all of its variables, then we say f is a non-degenerate function. Conversely,363

we say f is a degenerate function if it does not depend on at least one variable.364

We now define simple extension as365

▶ Definition 3. Let f ∈ Fn be non-degenerate. A simple extension of f is either f itself or366

a function g ∈ Fn+m satisfying:367

1. g is a non-degenerate function,368

2. CC(g) = CC(f) +m, and369

3. there exists a setting k ∈ {0, 1}m, called a key, such that for all x ∈ {0, 1}n, g(x, k) = f(x).370

We denote the first n inputs of f and g by x1, . . . xn and will refer to the extra m inputs371

of g as extension variables and refer to them as y1, . . . , ym. From the definition of simple372

extension above, we define the following decision problem.373

▶ Problem 1 (f -SEP). Let f be a sequence of Boolean functions {fn}n∈N such that each fn374

is a non-degenerate function in Fn. The f-Simple Extension Problem is defined as follows:375

Given n ∈ N and tt(g)—the truth tables of a binary function g ∈ Fn+m—decide whether g is376

a simple extension of fn.377

We extend this to partial functions,378

▶ Problem 2 (f -SEP∗). Given n ∈ N and a partial tt(g), decide whether any completion of379

the truth table is a simple extension of fn.380

2.2 An Explicit Reduction BPIS from to f-SEP∗
381

Recall the formulation of BPIS from [18],382

▶ Problem 3 (BPIS). The 2n × 2n Bipartite Permutation Independent Set is defined as383

follows: Given G = (V,E) a directed graph with vertex set V = [n] × [n]. Decide whether384

there exists a permutation π : [2n]→ [2n] such that:385

1. π([n]) = [n],386

2. π({n+ i : i ∈ [n]}) = {n+ i : i ∈ [n]},387

3. if ((j, k), (j′, k′)) ∈ E, then either π(j) ̸= k or π(j′ + n) ̸= k′ + n388

If the Exponential Time Hypothesis holds, then BPIS cannot be solved much faster than389

brute-forcing over all 2o(n log n) permutations [29]. BPIS is a natural problem to show hardness390

of circuit size problems since there are O(2s log s) circuits of size s. Reducing from BPIS391

implies, assuming ETH, that our problem can not be solved much faster than by brute-forcing392

over all possible circuits.393

The reduction from BPIS to f -SEP∗, as it appears as part of the original proof, is somewhat394

implicit; the target problem, as written, could be described more simply as “determine whether395

a partial truth table is ever consistent with a monotone read-once formula.” Since this is easy396

for total functions [2, 13], this view of the reduction cannot help us to extend the reduction397

technique to total MCSP. We will need the more general f -SEP and by reframing Ilango’s398

proof we gain insight into how it might extend to total functions.399

The connection to f -SEP∗ is explicitly stated, however, in the introduction of [18]. Here,400

the reduction is identified with OR4n-SEP∗ where each z variable is an extension variable.401

12 Simple Circuit Extensions for XOR in PTIME

This is true, though non-degenerate functions computed by read-once formulas are simple402

extensions of any of their non-degenerate restrictions. When framing the reduction to f -SEP∗403

explicitly, we find it more compelling to choose a different function f̂ , whose truth table404

is given by
∨

i∈[2n](yi ∧ zi) — because using f̂ makes the intuitive description of Ilango’s405

technique “reverse gate elimination” an obvious property of the reduction. Under this framing,406

the extension variables will instead be the x variables in Ilango’s original proof. Despite407

this, fixing f to be OR4n is not arbitrary; afterwards, we discuss what insight it provides.408

Informally, the two choices of base function provide distinct “channels” for ETH to imply409

hardness of f -SEP∗.410

Structural Lemmas To encode BPIS in f̂ -SEP∗, we first prove two lemmas which were411

essentially proven in tandem in [18] as Lemma 16. We separate them out here and stay faithful412

to the original arguments. Like Lemma 16, these lemmas establish structural properties of413

circuits computing our base function f̂ and our eventual output ĝ.414

▶ Lemma 4. Let f̂ : {0, 1}2n × {0, 1}2n → {0, 1} be the Boolean function computed by415 ∨
i∈[2n](yi ∧ zi). If ψ be an optimal normalized6 formula computing f̂ , then ψ, as a formula,416

is equal to
∨

i∈[2n](yi ∧ zi).417

In particular, the only difference between two distinct optimal circuits for f̂ is which binary418

tree of fanin 2 ∨ gates is used.419

Proof. Observe that ψ must read all of its input variables and furthermore must do so420

positively. This is because (1) f depends on all of its variables and is monotone in them, and421

(2) ψ is normalized and thus no ¬ gates can appear internally in the circuit. We note that ψ422

must use a total of 4n− 1 gates since f is non-degenerate on 4n variables computable. We423

see that ψ must contain at least 2n− 1 ∨ gates: substituting z = 12n and simplifying yields424

a monotone read once formula computing OR2n(y1, . . . , y2n) which must consist of 2n− 1 ∨425

gates that appear in ψ.426

We now argue that each zi feeds into an ∧ gate. Assume otherwise, then observe that427

setting zi = 1 and simplifying removes at least two gates (since z1 ∨ p ≡ 1 ∨ p ≡ 1). The428

resulting read once formula for f̂ |zi←1 uses at most 4n − 3 gates. This is a contradiction429

since f̂ |zi←1 still depends on all of its remaining 4n− 1 variables: it cannot be computed by430

a circuit with fewer than 4n− 2 gates.431

We now argue the other input to the ∧ gate fed by zi is yi. Assume otherwise. Notice432

that since ψ is read-once, setting zi ← 0 simplifying disconnects the other input to ∧ gate433

and thus removes dependence on any variables it depends on. However, f̂ |zi←0 still depends434

on all of its variables besides yi. Thus the ∧ gate can only read yi.435

Since each zi and yi feed a distinct ∧ gate, there are at least 2n ∧ gates. Since there are436

4n− 1 total gates, and at least 2n− 1 ∨ gates, we know that these ∧ gates are the only ∧437

gates that appear. Thus the remainder of the circuit is a binary tree of 2n− 1 ∨ gates whose438

2n leaves are the 2n ∧ gates. ◀439

Having established the structure of optimal circuits computing f̂ we can further restrict440

its simple extensions. Extra restrictions to the truth table enforce that extension variables441

must be spliced into the circuit using 2n additional ∨ gates that each read a different yi.442

6 A formula is normalized if all negations are pushed down to the input level. Normalization does not
affect the size of the formula, and thus f -SEP∗ still reduces to MCSP∗ even if we restrict ourself to
normalized formulas.

M. Carmosino, N. Dang, and T. Jackman 13

Table 2 BPIS requirements and the corresponding restrictions on ĝ

BPIS Requirement on σ Corresponding ĝ Restriction Impact If π Violates

σ({1, . . . , n}) = {1, . . . , n} ORn(x1, . . . , xn) when
z = 1n0n and y = 02n

If π(i) = j ≥ n, then
zj ← 0 removes xi in Cπ

σ({n + 1, . . . , 2n})
= {n + 1, . . . , 2n}

ORn(xn+1, . . . x2n) when
z = 0n1n and y = 02n

As above, Cπ↾zj←0 will
not depend on xi

If ((j, k), (j′, k′)) ∈ E then
σ(j) ̸= k or σ(n + j′) ̸= σ(n + k′)

1 if (x, y, z) = (ekek′ , 02n, ejej′)
where ∃((j, k), (j′, k′)) ∈ E

Cπ wrongly outputs 0

This pairing of each yi with a different xj will define a permutation in which we can encode443

BPIS solutions.444

▶ Lemma 5. Let g : {0, 1}2n × {0, 1}2n × {0, 1}2n → {0, 1} be any simple extension of f̂445

satisfying the following conditions:446

g(x, y, z) =


f̂(y, z) if x = 02n

OR2n(z1, . . . z2n) if x = 12n

OR4n(x1, . . . x2n, y1, . . . y2n) if z = 12n

0 if z = 02n

447

If ϕ is an optimal normalized formula computing g then there exists a permutation π : [2n]→448

[2n] such that ϕ equals, as a formula,
∨

i∈[2n]((xπ(i) ∨ yi) ∧ zi).449

Proof. Since g(x, y, z) = f̂(y, z) when x = 02n, we know that ϕ must read all y and z450

variables positively. Similarly, all x variables must be read positively, since g(x, y, 12n) =451

OR4n(x1, . . . x2n, y1, . . . y2n). Note that these restrictions also imply that ϕ contains exactly452

4n− 1 ∨ gates and 2n ∧ gates since substituting and simplifying yields optimal formulas for453

those restrictions. From the lemma above, we know know that when setting x = 02n and454

simplifying, we obtain a circuit structurally equivalent to
∨

i∈[2n](yi ∧ zi). Therefore 2n ∨455

gates must be removed during simplification. These ∨ gates cannot feed any remaining ∨456

above the ∧ gates, since otherwise setting x = 12n would fix the circuit to be 1, rather than457

OR2n(z1, . . . z2n). Similarly, zi cannot feed any of these ∨ gates, as setting x = 12n would458

remove dependence on that zi since the circuit is a read-once formula. Thus each ∨ gate can459

only depend on the x and y variables. Observe that each yi must feed into one of these ∨460

gates instead of the ∧ gate fed by zi, as otherwise when we set x = 12n, the function would461

still depend on yi. Since there are exactly 2n additional ∨ gates, and exactly 2n y and 2n x462

variables, its easy to see that each additional ∨ gate must read one xi and one yj . Therefore,463

as a formula, ϕ must be
∨

i∈[2n]((xπ(i)∨yi
) ∧ zi) for some permutation π. ◀464

An Explicit Reduction We now provide an explicit reduction from BPIS to f̂ -SEP∗. Given an465

instance G of BPIS we output 4n and the partial truth-table for a function ĝ that is consistent466

with the requirements of Lemma 5. We add three additional restrictions (listed in Table 2) to467

ensure that any permutation π, whose corresponding circuit Cπ ≡
∨

i∈[2n]
(
(xπ(i) ∨ yi) ∧ zi

)
468

is consistent with ĝ, is also a solution for G (and vice versa). All other rows of the truth table469

are left undefined (e.g. as ⋆). We summarize the requirements for any valid BPIS solution σ,470

the corresponding restriction, and how it enforces the requirement on π in Table 2.471

14 Simple Circuit Extensions for XOR in PTIME

This completes the reduction as any σ satisfying BPIS for G can be used to construct472

a read-once circuit consistent with ĝ and vice versa. The arguments verifying this are the473

same as in [18], and we refer the reader there for the full details.474

▶ Lemma 6. BPIS reduces to f̂ -SEP∗ in 2O(n) time.475

The Original Framing In its introduction, [18] identifies ĝ as a simple extension of OR4n.476

Under this lens, the hardness comes from determining which OR4n base circuit can have the477

z extension variables added. The additional truth-table restrictions on ĝ force each zi to be478

spliced in a particular way adjacent to yi. Assuming ETH, there are Ω(n!) optimal base479

OR4n circuits that must be checked via brute-force.480

Implicit Circuit Lower Bounds & Enumeration of Optimal Circuits From both presenta-481

tions, we see that leveraging f -SEP involves explicit circuit size lower bounds. Indeed, both482

Lemma 4 and Lemma 5 prove formula lower bounds for specific non-degenerate functions.483

However, in a sense, circuit lower bounds are intrinsic to the reduction itself. This connection484

can be made rigorous: the reduction can used to produce explicit Boolean functions which485

enjoy non-vacuous lower bounds. On no instance of BPIS, the reduction outputs a partial486

truth table where every completion is non-degenerate but not a simple extension. Hence, the487

circuit complexity of these completions is not the vacuous 6n− 1 lower bound obtained by488

knowing that functions produced are non-degenerate.489

Furthermore, the reduction did not solely rely on the circuit complexity of f̂ and ĝ.490

Lemmas 4 and 5 tightly control how base circuits and their extensions can be arranged;491

and this is pivotal for encoding BPIS permutations. This structural requirement can be492

formalized by observing the reduction is also an efficient Levin reduction.493

Recall, from [32], that a Levin reduction is a many-one reduction that also efficiently494

maps witnesses, not just problem instances. More precisely, let R be a set of ordered pairs495

(x,w) where x is a yes-instance of a problem and w is an accompanying certificate. We define496

LR, the language defined by R, to be the set of elements x such that (x,w) ∈ R for some w.497

Then a Levin reduction between two languages A and B is an efficient many-one reduction r498

between problem instances paired with two efficient mappings m, ℓ between instance-witness499

pairs that satisfy (1) if (x,w) ∈ RA then (r(x),m(x,w)) ∈ RB and (2) (t(x), w) ∈ RB implies500

(x, ℓ(x,w)) ∈ RA.501

For BPIS, the witnesses for an instance are simply the valid permutations σ and witnesses502

for f̂ -SEP are optimal circuits computing the extension. Let RBPIS and Rf̂-SEP∗ be the503

sets of ordered pairs consisting of problem instances and all of their witnesses as described.504

The reduction admits linear time mappings between witnesses: given σ, simply construct505 ∨
i∈[2n]((xσ(i) ∨ yi) ∧ zi) and given a circuit for ĝ, simply read off the permutation from the506

x variables.507

M. Carmosino, N. Dang, and T. Jackman 15

References508

1 Kazuyuki Amano and Jun Tarui. A well-mixed function with circuit complexity 5n: Tightness509

of the lachish–raz-type bounds. Theoretical computer science, 412(18):1646–1651, 2011.510

2 Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning read-once formulas with511

queries. J. ACM, 40(1):185–210, 1993. doi:10.1145/138027.138061.512

3 Vikraman Arvind and Yadu Vasudev. Isomorphism testing of boolean functions computable513

by constant-depth circuits. Inf. Comput., 239:3–12, 2014. URL: https://doi.org/10.1016/514

j.ic.2014.08.003, doi:10.1016/J.IC.2014.08.003.515

4 Eric Blais, Clément L Canonne, Igor C Oliveira, Rocco A Servedio, and Li-Yang Tan. Learning516

circuits with few negations. arXiv preprint arXiv:1410.8420, 2014.517

5 Norbert Blum and Martin Seysen. Characterization of all optimal networks for a si-518

multaneous computation of AND and NOR. Acta Informatica, 21:171–181, 1984. doi:519

10.1007/BF00289238.520

6 Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit lower521

bounds for mcsp from local pseudorandom generators. ACM Transactions on Computation522

Theory (TOCT), 12(3):1–27, 2020.523

7 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction524

to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/525

introduction-algorithms.526

8 William Feller and Philip M Morse. An introduction to probability theory and its applications.527

vol i, 1968.528

9 Ludmila Glinskih and Artur Riazanov. MCSP is hard for read-once nondeterministic branching529

programs. In Armando Castañeda and Francisco Rodríguez-Henríquez, editors, LATIN 2022:530

Theoretical Informatics - 15th Latin American Symposium, Guanajuato, Mexico, November531

7-11, 2022, Proceedings, volume 13568 of Lecture Notes in Computer Science, pages 626–640.532

Springer, 2022. doi:10.1007/978-3-031-20624-5_38.533

10 Ludmila Glinskih and Artur Riazanov. Partial minimum branching program size problem is534

eth-hard. Electron. Colloquium Comput. Complex., TR24-117, 2024. (To Appear in ITCS535

2025). URL: https://eccc.weizmann.ac.il/report/2024/117, arXiv:TR24-117.536

11 Alexander Golovnev, Edward A. Hirsch, Alexander Knop, and Alexander S. Kulikov. On537

the limits of gate elimination. J. Comput. Syst. Sci., 96:107–119, 2018. doi:10.1016/j.jcss.538

2018.04.005.539

12 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina540

Kolokolova, and Avishay Tal. Ac0 [p] lower bounds against mcsp via the coin problem.541

In ICALP, 2019.542

13 Martin Charles Golumbic, Aviad Mintz, and Udi Rotics. Factoring and recognition of read-543

once functions using cographs and normality and the readability of functions associated with544

partial k-trees. Discrete Applied Mathematics, 154(10):1465–1477, 2006. URL: https://www.545

sciencedirect.com/science/article/pii/S0166218X06000072, doi:10.1016/j.dam.2005.546

09.016.547

14 Shuichi Hirahara. Np-hardness of learning programs and partial MCSP. In 63rd IEEE Annual548

Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31549

- November 3, 2022, pages 968–979. IEEE, 2022. doi:10.1109/FOCS54457.2022.00095.550

15 Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. Np-hardness of minimum circuit551

size problem for OR-AND-MOD circuits. In Rocco A. Servedio, editor, 33rd Computational552

Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102553

of LIPIcs, pages 5:1–5:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL:554

https://doi.org/10.4230/LIPIcs.CCC.2018.5, doi:10.4230/LIPICS.CCC.2018.5.555

16 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of mcsp and its556

variants. In 32nd Computational Complexity Conference (CCC 2017). Schloss Dagstuhl-557

Leibniz-Zentrum fuer Informatik, 2017.558

https://doi.org/10.1145/138027.138061
https://doi.org/10.1016/j.ic.2014.08.003
https://doi.org/10.1016/j.ic.2014.08.003
https://doi.org/10.1016/j.ic.2014.08.003
https://doi.org/10.1016/J.IC.2014.08.003
https://doi.org/10.1007/BF00289238
https://doi.org/10.1007/BF00289238
https://doi.org/10.1007/BF00289238
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/978-3-031-20624-5_38
https://eccc.weizmann.ac.il/report/2024/117
https://arxiv.org/abs/TR24-117
https://doi.org/10.1016/j.jcss.2018.04.005
https://doi.org/10.1016/j.jcss.2018.04.005
https://doi.org/10.1016/j.jcss.2018.04.005
https://www.sciencedirect.com/science/article/pii/S0166218X06000072
https://www.sciencedirect.com/science/article/pii/S0166218X06000072
https://www.sciencedirect.com/science/article/pii/S0166218X06000072
https://doi.org/10.1016/j.dam.2005.09.016
https://doi.org/10.1016/j.dam.2005.09.016
https://doi.org/10.1016/j.dam.2005.09.016
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.4230/LIPIcs.CCC.2018.5
https://doi.org/10.4230/LIPICS.CCC.2018.5

16 Simple Circuit Extensions for XOR in PTIME

17 Yizhi Huang, Rahul Ilango, and Hanlin Ren. Np-hardness of approximating meta-complexity:559

A cryptographic approach. Cryptology ePrint Archive, 2023.560

18 Rahul Ilango. Constant depth formula and partial function versions of mcsp are hard. SIAM561

Journal on Computing, 0(0):FOCS20–317–FOCS20–367, 2020. arXiv:https://doi.org/10.562

1137/20M1383562, doi:10.1137/20M1383562.563

19 Rahul Ilango. The minimum formula size problem is (ETH) hard. In 62nd IEEE Annual564

Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February565

7-10, 2022, pages 427–432. IEEE, 2021. doi:10.1109/FOCS52979.2021.00050.566

20 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. Np-hardness of circuit minimization567

for multi-output functions. In Electronic Colloquium on Computational Complexity (ECCC),568

volume 27, page 21, 2020.569

21 Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n - o(n) for boolean circuits.570

In Krzysztof Diks and Wojciech Rytter, editors, Mathematical Foundations of Computer571

Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August 26-30,572

2002, Proceedings, volume 2420 of Lecture Notes in Computer Science, pages 353–364. Springer,573

2002. doi:10.1007/3-540-45687-2_29.574

22 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms575

and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.576

23 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In F. Frances Yao and577

Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on578

Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 73–79. ACM, 2000.579

doi:10.1145/335305.335314.580

24 Klein and Paterson. Asymptotically optimal circuit for a storage access function. IEEE581

Transactions on Computers, C-29(8):737–738, 1980. doi:10.1109/TC.1980.1675657.582

25 Yu A Kombarov. The minimal circuits for linear boolean functions. Moscow University583

Mathematics Bulletin, 66(6):260–263, 2011.584

26 Yu A Kombarov. Complexity and structure of circuits for parity functions. Journal of585

Mathematical Sciences, 233:95–99, 2018.586

27 Oded Lachish and Ran Raz. Explicit lower bound of 4.5n - o(n) for boolena circuits. In587

Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC588

’01, page 399–408, New York, NY, USA, 2001. Association for Computing Machinery. doi:589

10.1145/380752.380832.590

28 Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In Sandy591

Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,592

Durham, NC, USA, November 16-19, 2020, pages 1243–1254. IEEE, 2020. doi:10.1109/593

FOCS46700.2020.00118.594

29 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized595

problems. SIAM Journal on Computing, 47(3):675–702, 2018. arXiv:https://doi.org/10.596

1137/16M1104834, doi:10.1137/16M1104834.597

30 Eugene M Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In598

Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages 652–658,599

1999.600

31 William J Masek. Some np-complete set covering problems. Unpublished manuscript, 1979.601

32 Noam Mazor and Rafael Pass. Gap MCSP is not (levin) np-complete in obfustopia. In Rahul602

Santhanam, editor, 39th Computational Complexity Conference, CCC 2024, July 22-25, 2024,603

Ann Arbor, MI, USA, volume 300 of LIPIcs, pages 36:1–36:21. Schloss Dagstuhl - Leibniz-604

Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPIcs.CCC.2024.36, doi:605

10.4230/LIPICS.CCC.2024.36.606

33 Wolfgang J. Paul. A 2.5 n-lower bound on the combinational complexity of boolean functions.607

In Proceedings of the Seventh Annual ACM Symposium on Theory of Computing, STOC608

’75, page 27–36, New York, NY, USA, 1975. Association for Computing Machinery. doi:609

10.1145/800116.803750.610

https://arxiv.org/abs/https://doi.org/10.1137/20M1383562
https://arxiv.org/abs/https://doi.org/10.1137/20M1383562
https://arxiv.org/abs/https://doi.org/10.1137/20M1383562
https://doi.org/10.1137/20M1383562
https://doi.org/10.1109/FOCS52979.2021.00050
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1145/335305.335314
https://doi.org/10.1109/TC.1980.1675657
https://doi.org/10.1145/380752.380832
https://doi.org/10.1145/380752.380832
https://doi.org/10.1145/380752.380832
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://arxiv.org/abs/https://doi.org/10.1137/16M1104834
https://arxiv.org/abs/https://doi.org/10.1137/16M1104834
https://arxiv.org/abs/https://doi.org/10.1137/16M1104834
https://doi.org/10.1137/16M1104834
https://doi.org/10.4230/LIPIcs.CCC.2024.36
https://doi.org/10.4230/LIPICS.CCC.2024.36
https://doi.org/10.4230/LIPICS.CCC.2024.36
https://doi.org/10.4230/LIPICS.CCC.2024.36
https://doi.org/10.1145/800116.803750
https://doi.org/10.1145/800116.803750
https://doi.org/10.1145/800116.803750

M. Carmosino, N. Dang, and T. Jackman 17

34 Wolfgang J. Paul. A 2.5 n-lower bound on the combinational complexity of boolean functions.611

SIAM J. Comput., 6(3):427–443, 1977. doi:10.1137/0206030.612

35 NP Red’kin. Proof of minimality of circuits consisting of functional elements. Systems Theory613

Research: Problemy Kibernetiki, pages 85–103, 1973.614

36 Hanlin Ren and Rahul Santhanam. Hardness of kt characterizes parallel cryptography.615

Cryptology ePrint Archive, 2021.616

37 Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. LIPIcs, 151,617

2020.618

38 Jürgen Sattler. Netzwerke zur simultanen berechnung boolescher funktionen. In Peter Deussen,619

editor, Theoretical Computer Science, 5th GI-Conference, Karlsruhe, Germany, March 23-25,620

1981, Proceedings, volume 104 of Lecture Notes in Computer Science, pages 32–40. Springer,621

1981. URL: https://doi.org/10.1007/BFb0017293, doi:10.1007/BFB0017293.622

39 Claus-Peter Schnorr. Zwei lineare untere schranken für die komplexität boolescher funktionen.623

Computing, 13(2):155–171, 1974. doi:10.1007/BF02246615.624

40 Claude. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System625

Technical Journal, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x.626

41 B. A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches) algorithms.627

Annals of the History of Computing, 6(4):384–400, 1984. doi:10.1109/MAHC.1984.10036.628

42 J. H. van Lint and R. M. Wilson. Recursions and generating functions, page 109–1311.629

Cambridge University Press, 1992.630

43 Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.631

44 Uri Zwick. A 4n lower bound on the combinational complexity of certain symmetric boolean632

functions over the basis of unate dyadic boolean functions. SIAM Journal on Computing,633

20(3):499–505, 1991.634

https://doi.org/10.1137/0206030
https://doi.org/10.1007/BFb0017293
https://doi.org/10.1007/BFB0017293
https://doi.org/10.1007/BF02246615
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1109/MAHC.1984.10036

18 Simple Circuit Extensions for XOR in PTIME

A Circuits635

In this section, we precisely define Boolean circuit complexity and accompanying notions636

related to the “shapes” and “parts” of circuits. These definitions are straightforward, but637

the details matter because we are working with general circuits and functions of linear size638

complexity. We cannot, for example, afford to layer circuits or put them into negation normal639

form (NNF, all NOT-gates on the inputs) because size-optimal circuits do not (in general)640

obey these restrictions. In particular, optimal circuits for XOR are neither layered nor in641

NNF (Theorem 37). We will require normal forms that are free to impose (Lemma 10).642

Define general circuits over the basis B = {∧,∨,¬, 0, 1} of Boolean functions: binary643

∧ and ∨, unary ¬ and zero-ary (constants) 1 and 0. Circuits take zero-ary variables in644

X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . ym} for some fixed n and m as inputs. Throughout645

this work, we use the standard formulation of circuits consisting of single-sink and multi-646

source DAGs where internal nodes, called gates, are labeled by function symbols, sources647

are labeled by input variables, and edges as “wires” between the gates. We write VC and648

EC to denote the set of nodes and the set of edges of a circuit C respectively, omitting649

the subscript when it is clear which circuit is being referenced. Circuits compute Boolean650

functions through substitution followed by evaluation.651

An assignment ρ of input variables is a mapping from the set of inputs to {0, 1}. To652

substitute into a circuit according to an assignment ρ, each input xi is replaced by the653

constant ρ(xi). For a circuit G and assignment ρ we write G↾ρ to denote the circuit obtained654

by substituting into G according to ρ. To evaluate a circuit, the values of interior nodes655

labeled by function symbols are computed in increasing topological order. Each gate’s value656

is obtained by applying it’s function to the value of the node’s incoming wires. The output657

of the circuit overall is the value of its sink.658

Let Fn be the family of Boolean functions on n variables. We say a circuit G on n659

variables computes g ∈ Fn if for all α ∈ {0, 1}n, G(α) = g(α). The size of a circuit G is660

denoted |G| and CC(g), the circuit complexity of a Boolean function g, is the minimum size661

of any circuit computing g. We study two notions of circuit size, µD and µR, which count the662

number of binary gates and the total number of gates respectively. We decorate any notation663

with D or R (e.g. CC(G)D) to denote µD and µR whenever necessary, but will omit if the664

measure is clear from context or if a statement holds for both measures. We say a circuit G665

computing g is optimal if |G| = CC(g) and, in D, require that the circuit is normalized, i.e.666

does not contain double-negations and every non-¬ node feeds at most one ¬ gate.667

We will often order the nodes of a circuit by depth, the maximum number of binary gates668

on any path from the node to the output. We sort a circuits nodes in decreasing order by669

depth, i.e. depth(u) > depth(v) implies u appears before v in our ordering, breaking ties670

arbitrarily. Such orderings are efficiently realizable as depth is efficiently computable. To671

ensure we correctly account just binary gates for the depth, we first assign the outgoing672

edges of each binary gate and negation gate with weight −1 and 0 respectively. Then, we673

simply take the circuit’s underlying DAG, reverse its edges, and compute the shortest path674

from the output node to every other node in linear time [7].675

We will sometimes work closely with specific parts of circuits. To this end we formally676

define a subcircuit rooted at a vertex α.677

▶ Definition 7 (Induced Subcircuit rooted at α). Let C = (V,E) be a circuit and let α ∈ V .678

Let Pα = {b ∈ V |∃ a path from β to α}. The induced subcircuit rooted at α in C, denoted679

C[α], is the vertex-induced subgraph of C whose vertex set is Pα and whose edge set consists680

of the edges in EC whose endpoints are nodes in Pα.681

M. Carmosino, N. Dang, and T. Jackman 19

Table 3 Gate elimination rules, categorized by their impact on fanout

Fixing Passing Resolving Pruning

0 ∧ γ → 0 1 ∧ γ → γ γ ∧ ¬γ → 0 γ ∧ γ → γ

γ ∧ 0→ 0 γ ∧ 1→ γ ¬γ ∧ γ → 0

1 ∨ γ → 1 0 ∨ γ → γ γ ∨ ¬γ → 1 γ ∨ γ → γ

γ ∨ 1→ 1 γ ∨ 0→ γ ¬γ ∨ γ → 1

¬0→ 1 ¬¬γ → ¬

¬1→ 0

B Gate Elimination682

Most of the proofs in this paper involve arguments by gate elimination: we take a circuit,683

substitute a subset of inputs with constants, and then eliminate gates according to a set of684

basic simplification rules. This is illustrated in Figure 4.685

∧
α

g γ1κ

7→ ∧
α

g γ1κ

7→
g γ1κ

Figure 4 An example of applying the passing simplification 1∧ γ → γ. Notice that γ inherits the
fanout from α, and α can then be garbage collected.

Towards algorithms for the f -Simple Extension Problem, we fix a concrete encoding of686

these circuit-manipulation steps. Gates γ are identified by natural numbers. We have one687

book-keeping manipulation: garabage collection deletes a gate γ with no outgoing wires; i.e,688

fanout(γ) = 0. A garbage collection step is encoded by ⟨Gc, γ ∈ N⟩.689

The main gate elimination rules are organized into four categories in Table 3, according690

to how they impact fanout. All these rules (i) eliminate at least one logic gate and (ii) have691

no effect on the function computed by a circuit C, because they are Boolean identities.692

A gate elimination step is encoded by the tuple ⟨Ge, r ∈ 17, b : N→ 7⟩ where r identifies693

a rule and b is a “binding” that maps gates of C to gates of the circuit pattern on the left694

hand side of rule r. Each pattern is a well-formed Boolean formula and thus has a main695

connective α in the standard sense. To apply a rule, examine the right hand side: if it is696

a constant c ∈ {0, 1}: delete all incoming wires to α and change the type of α to c.697

a matched node (i.e., γ): redirect all wires reading α to read from γ instead.698

Note that the identifier of α never changes; only its type and incident wires. Depending699

on the initial fanout of each gate involved in the pattern, applying a rule could totally700

disconnect some gate(s) and leave the circuit in a state that needs garbage collection. We701

introduce notation for applying sequences of these steps to circuits, and define composed702

circuit manipulations that are “well behaved” with respect to specific circuits.703

▶ Definition 8. A simplification is a sequence of gate elimination and garbage collection704

steps. If λ is a simplification and C is a circuit, write λ(C) to denote the new circuit obtained705

by applying each step of λ to C in order. If a single step of λ fails to apply in C, then fix706

λ(C) = C so that invalid λ for C are idempotent by convention. A simplification λ is called707

20 Simple Circuit Extensions for XOR in PTIME

Table 4 Changes to fanout after each type of gate elimination step.

Fixing Passing Resolving Pruning

fo′(κ) = fo(κ)− 1 fo′(κ) = fo(κ)− 1 fo′(α′) = fo(α) fo′(γ) ≥ fo(γ) + fo(α)− 2

fo′(γ) = fo(γ)− 1 fo′(γ) = fo(γ) + fo(α)− 1 fo′(γ) = fo(γ)− 1 fo′(α) = 0

fo′(α) = fo(α) fo′(α) = 0 fo′(¬) = fo(¬)− 1 fo′(¬) = fo(¬)− 1

terminal for C if, for every λ′ that extends λ by one additional gate elimination or garbage708

collection step, λ(C) = λ′(C), and/or709

layered for C if the depth of binary gates binding to α in each step is non-decreasing.710

Simplifications formalize every sequence of circuit-manipulation steps except for sub-711

stitution. They change the function computed by a circuit if and only if some input gate712

is garbage-collected. Simplifications suffice to impose convenient structural properties on713

arbitrary circuits.714

▶ Definition 9. A circuit C is normalized or in normal form if715

1. C is constant-free or C is a single constant,716

2. every gate in C has a path to the output, and717

3. no sub-circuit of C matches the left hand side of a gate elimination rule.718

Any terminal simplification suffices to put a circuit C in normal form, and it straight-719

forward to see that the number of constants in C lower-bounds the number of eliminated720

gates. We require more: every circuit C can be normalized by a layered simplification, and721

the number of eliminated gates is lower-bounded by the cumulative fanout of constants in C.722

▶ Lemma 10. For any well-formed circuit C with q constants that have total fanout ℓ, there is723

a terminal and layered simplification λ such that λ(C) is a single constant or |λ(C)| ≤ |C|−ℓ.724

Proof. We update two potential functions as C is simplified: ϕt, the cumulative fanout of725

constants in C and µt, the number of binary gates eliminated after t manipulations. Since726

a circuit is normalized only when it is a single constant or ϕt = 0, it suffices to exhibit a727

terminal layered simplification λ such that µt ≥ ℓ if ϕt = 0.728

Sort the gates of C by depth (breaking ties arbitrarily) to fix a total order on gates.729

This ordering remains consistent throughout the entirety of simplification. Constructing λ is730

straightforward: apply gate elimination rules in depth-order (by α) from the input gates of731

the circuit “up”, garbage collecting any disconnected gate(s) immediately afterwards so only732

gates with a path to the output remain.733

To update ϕt, we enumerate how fanout changes for the possible gates that may appear734

in each rule: the main connective α, a matched node γ, a constant κ, and a negation gate735

¬. Write fo(·) for the fanout of a gate before rule application, and fo′(·) for the fanout of736

a gate afterwards. For example, in Figure 4, we have fo′(α′) = 0, fo′(κ) = fo(κ) − 1, and737

fo′(γ) = fo(γ) + fo(α)− 1. We display the fanout-updates for each rule type in Table 4.738

Because α has a path to the output, fo(α) ≥ 1. Thus, each rule application reduces ϕt by739

at most 1, even when γ matches a constant (as in Figure 5). Any reduction in ϕt by 1 is740

accompanied by a corresponding increase in µt. Furthermore, observe that any subsequent741

garbage collection steps only increase µ and never reduce the ϕ. Any β that is garbage742

collected cannot read a constant: β would be the main connective for a rule application lower743

in the circuit than α. Hence if ϕt = 0, we must have µt ≥ ℓ.744

M. Carmosino, N. Dang, and T. Jackman 21

Lastly, always choosing the depth-maximal α guarantees that our simplification is layered.745

This follows from the fact that rule applications only introduce new opportunities for gate746

elimination whose main connectives are shallower in the circuit. ◀747

To finish capturing circuit manipulation, we encode a variable substitution step by the748

tuple ⟨Sub, v ∈ {x, y}, i ∈ N, c ∈ {0, 1}⟩ where v identifies the target set of variables (base749

x’s or extension y’s), i gives the variable number, and c is the value to be substituted. Apply750

a single substitution ⟨Sub, v, i, c⟩ and to the circuit C by changing the type of every vi-gate751

γ to the given constant c while leaving the identifier of each γ intact, exactly as in the752

application of a fixing rule.753

Substitution always changes the function computed by C, restricting its domain to a754

subcube. Additionally, C remains well-formed after any substitution, because input gates755

have fanin 0. However, C is never in normal form immediately after a substitution because756

it introduces a constant. So we generalize simplifications by allowing for substitution steps.757

▶ Definition 11. A restriction is a sequence of substitution, gate elimination, and garbage758

collection steps. Restrictions generalize simplifications, so we extend notation and conventions759

accordingly: ρ(C) denotes the result of applying restriction ρ to circuit C, and invalid760

restrictions for C are idempotent by convention.761

The categories of terminal and layered simplifications apply immediately to restrictions,762

because they explicitly reference only gate elimination or garbage collection steps. Thus,763

restrictions are terminal and/or layered only with respect to how they simplify and not how764

they substitute. When applying a restriction ρ to a Boolean function instead of a circuit, we765

simply ignore the additional simplification steps (if any).766

C Structural Properties of Optimal Simple Extension Circuits767

In this section we characterize the structure of optimal simple extension circuits. The main768

result is a Y -trees decomposition (Theorem 19), summarized below.769

▶ Theorem (Informal). In any optimal circuit for a simple extension, extension variables770

occur in isolated read-once formulas (Y -trees) that depend only on extension variables.771

▶ Remark 12. From this point onward, we exclusively consider the DeMorgan basis D.772

The same arguments show an identical decomposition theorem in R. In fact, R is simpler.773

Negations cannot be involved in any of our restrictions with keys, since Lemma 10 removes774

at least m binary gates from the circuit and no simplification steps introduce negations.775

Therefore, the removal of any negations would surpass the budgeted additional m gates in776

our complexity measure. Consequently, each Y -tree in an optimal R simple extension circuit777

is not only a read-once formula, it is also monotone.778

∨ α

0 γ1κ

7→ 1 α

0 γ1κ

Figure 5 An application of a pruning rule where γ itself is a constant. Since fo(α) ≥ 1, we have
ϕt+1 = ϕt + fo′(α)− 2 = ϕt + fo(α)− 2 ≥ ϕt + 1− 2 = ϕt − 1.

22 Simple Circuit Extensions for XOR in PTIME

C.1 Restrictions With “Speed Limits” on Gate Elimination779

First we construct restrictions that are guaranteed to eliminate the gates of an optimal780

simple extension circuit as “slowly” as possible: exactly one costly logic gate is eliminated for781

each substituted variable. Structural information is then obtained by “watching” these slow782

restrictions operate. We begin by establishing basic properties of optimal simple extension783

circuits. First, combining normalization with the requirement that simple extensions are784

non-degenerate functions yields785

▶ Corollary 13 (Extension Variables are Read-Once). In any optimal circuit for a simple786

extension, the fanout of each extension variable is exactly one. Furthermore, if an extension787

is negated, this negation has fanout exactly one.788

If any extension variable has fanout greater than one, substituting a key and normalizing789

(Lemma 10) would eliminate more than m gates. This leads to a contradiction: the resulting790

circuit computing f would have size less than CC(f). Generalizing this observation, we791

obtain a short list of feasibly-checkable properties that guarantee a given circuit is the optimal792

circuit of a simple extension in Lemma 14.793

Essentially, the existence of a circuit G computing g with size CC(f) + m that (1) is794

not “trivially sub-optimal” and (2) not “trivially degenerate” witnesses that g is a Simple795

Extension of f . This is not immediate; such a circuit does not necessarily guarantee non-796

degeneracy of g and that CC(g) = CC(f) +m as G could admit non-trivial simplifications.797

However, non-degeneracy of f implies that such straightforward witness circuits suffice.798

▶ Lemma 14. Let f ∈ Fn be non-degenerate and suppose g ∈ Fn+m is an arbitrary extension799

of f . If there exists a normalized circuit G computing g such that800

1. |G| = CC(f) +m,801

2. G reads each base variable at least once, and802

3. G reads each extension variable exactly once,803

then g is a simple extension of f and G is an optimal circuit for g.804

Proof. Let functions f, g and circuit G be as specified in the lemma. If g is non-degenerate805

in all variables, then G must be an optimal circuit for g — otherwise we could restrict G806

with any key to f in g and contradict the circuit complexity of f . So in this case g is indeed807

a simple extension of f , and G is optimal. Suppose now (towards contradiction) that g is808

degenerate with respect to some set of extension variables D.809

We proceed by reverse induction starting with base case |D| = 1. Let yi be the unique810

degenerate variable. By definition of degeneracy, g|yi=0 = g|yi=1. Thus, there are keys to f811

in g with both yi = 1 and yi = 0. Therefore, we can substitute yi to eliminate ≥ 1 costly812

logic gate α of G with a fixing rule. The matched gate γ loses a wire to α, so it may become813

disconnected. Run garbage collection recursively starting at γ, until no more fanout-0 gates814

exist in G, and call the resulting circuit G′.815

Because yi is the only degenerate variable, no other input gates can be disconnected by816

garbage collection after substituting into yi (though some logic gates may be eliminated). So817

G′ is a well-formed circuit with constant fanout ≥ 1 and size |G′| ≤ |G| − 1. Furthermore,818

G′ computes function g′, an (n+m− 1)-variable extension of f , because the keys to f in819

g matching one setting of yi are preserved in g′. Now substitute the remaining (m − 1)820

extension variables of G′ according to one of these keys to f in g′ and normalize (Lemma 10)821

to obtain a circuit F ∗ that either822

1. has at most |G′| − (m− 1) + 1 < CC(f) gates, or823

2. computes a constant function.824

M. Carmosino, N. Dang, and T. Jackman 23

Both cases yield a contradiction; either to the circuit complexity or non-degeneracy of f .825

Now suppose |D| ≥ 1. Because all y-variables in D are degenerate, there are keys for all826

possible settings of them. So we reduce to the base case by substituting |D| − 1 extension827

variables such that, for each variable, exactly one costly logic gate is eliminated by a passing828

rule. Passing rules never disconnect the matched γ. This leaves a single degenerate y-variable829

in the new function g′′, an (n+m− |D|+ 1)-variable extension of f , computed by circuit830

G′′ obtained by normalization. G′′ and g′′ are now exactly as specified in the statement of831

this Lemma, except for the guarantee that g′′ has a unique degenerate extension variable.832

Therefore the base case with |D| = 1 applies to G′′ and g′′, concluding this proof. ◀833

We will want to substitute key bits one by one to better analyze intermediate circuits.834

This analysis lends itself to induction only if the intermediate circuits themselves are optimal835

circuits for intermediate simple extensions. This motivates the following special class of836

restrictions.837

▶ Definition 15 (All-Stops Restrictions). Let C denote an arbitrary circuit with n+m input838

variables. A restriction ρ that substitutes m variables is all-stops for C if, for each i ∈ m,839

there is a prefix ρi of ρ such that ρi(C) is an optimal circuit for a simple extension of the840

function computed by ρ(C) on (n+m− i) variables.841

If a restriction is all-stops, then exactly one binary gate is eliminated per substitu-842

tion. Since each extension variable (or its negation) is read by a single binary gate, it is843

straightforward to analyze the simplifications that occur.844

▷ Claim 16 (Simple Simplifications). Simplifications between substitutions in all-stops845

restrictions are simple, i.e. after substitution, the following gate elimination rules are applied846

in this exact order: a constant negation (if necessary), a passing rule, and lastly a double847

negation (if necessary).848

The sole binary gate cannot be eliminated via a fixing rule, as otherwise the circuit is849

not constant free and must either become constant or we could eliminate more costly gates.850

These highly-structured manipulations will help us build up a robust structure for optimal851

simple extension circuits in the next subsection. However, we must first show that such852

restrictions even exist. We surpass this goal: we construct one that is also layered.853

▶ Lemma 17. Let f ∈ Fn and suppose g ∈ Fn+m is a simple extension of f . For any854

optimal circuit G computing g, there is an all-stops restriction ρ for G such that855

1. ρ is terminal and layered, and856

2. ρ(G) is an optimal circuit computing f .857

Proof. Let Boolean functions f, g and circuit G be as in the Lemma. Sort the binary gates858

of G by depth (breaking ties arbitrarily) to fix a total order on gates. This ordering remains859

consistent throughout the entirety of our proof. Denote by K ⊆ {0, 1}m the set of all keys to860

f in g. Normalize G to eliminate double negations — no other rules can apply because G is861

optimal (Lemma 10). Record these initial steps in ρ0, which we then iteratively extend to862

the desired all-stops restriction.863

Take yi, read by the maximal in G. Such yi are well-defined because G reads all extension864

variables exactly once (Lemma 14) and so each yi has a unique depth in G. Consider the865

subcircuit around yi: denote by α the binary main connective that reads (¬)yi and by γ the866

sibling of (¬)yi (the “matched gate” in elimination rules). Now let K ′ ⊆ K be the subset of867

keys such that substituting yi according to any k ∈ K ′ would eliminate α with a passing868

rule.869

24 Simple Circuit Extensions for XOR in PTIME

If K ′ is non-empty, then substitute yi according to any key in K ′ and normalize the870

resulting circuit. Record these steps in a restriction ρ1 that extends ρ0. The resulting circuit871

G′ = ρ1(G) is in normal form, reads each base variable exactly as many times as G did, and872

reads each remaining extension variable exactly once. Therefore, the function computed by873

G′ is a simple extension of f on (n+m− 1) variables, and G′ is an optimal circuit (Lemma874

14). By construction, ρ1 is layered and terminal, so we will continue extending ρ1 by selecting875

a depth-maximal extension variable in G′ and re-starting this case analysis.876

If K ′ is empty, consider cases depending on the type of γ. Suppose towards contradiction877

that γ is not an extension variable or the negation of an extension variable; in this case878

there is no yj with a path to γ because we selected a yi of maximal depth. Substitute yi879

according to any key in K, and observe that we obtain a circuit with total constant-fanout880

exactly fo(α) ≥ 1 after applying a fixing rule. Then substitute all other extension variables881

according to the same key: the resulting circuit G′′ has total constant-fanout fo(α) +m− 1.882

Normalizing, we contradict either the circuit size or non-degeneracy of f (exactly as in the883

proof of Lemma 16).884

Therefore, if K ′ is empty, we must have that γ is (¬)yj for some j ̸= i — a layer885

tie between extension variables. Thus, a restriction will be layered regardless of which886

substitution (into yi or yj) is made first. Using the particular structure of this sub-circuit887

(i.e., “ (¬)yj α (¬)yi ” where α is the main binary connective) we construct a key that sets888

yj to eliminate α with a passing rule while preserving the rest of K. The idea is to extract889

information from G after yi is substituted according to any key in K. Such substitution890

mutates the sub-circuit around yi in G. If we can identically mutate G after setting yj to891

eliminate α by passing first, then we are done. The details of this construction follow.892

Purely to inspect the results, substitute yi in G according to any key in K, and observe893

that we obtain a circuit G′ with total constant fanout exactly fo(α) after applying a fixing894

rule. Furthermore, the function computed by G′ is an (m− 1)-input extension of f where895

α has been substituted with a particular constant value ci ∈ {0, 1} and the variable yj is896

disconnected from the input (and thus degenerate). This constant ci is all the information897

we need.898

Returning to G, there must exist a substitution sj ∈ {0, 1} for yj that eliminates α via a899

passing rule: this follows immediately by inspecting the truth tables of binary {∧,∨} and900

case analysis on the occurrence of a negation gate between yj and α. Extend ρ by first901

substituting sj for yj in G and normalize. The resulting circuit G′′ passes all wires reading902

α to (¬)yi and loses exactly one costly gate. Again by inspection, we can substitute yi with903

some value si ∈ {0, 1} such that the wires reading (¬)yi read the constant ci — identical to904

the subcircuit in G′. Thus, G′ computes an (m− 1)-input extension gj of f witnessed by905

the key {yj 7→ sj}. Extend the working restriction ρ1 by first {yj 7→ sj} and then {yi 7→ si},906

recording normalization steps in between and afterwards.907

Finally, observe that G′ meets all the preconditions of Lemma 14 and so gj is a simple908

extension of f and G′ is an optimal circuit computing gj . The proof concludes by iterating909

this case analysis on the set of keys and depth-maximal extension variables until all extension910

variables are eliminated. ◀911

C.2 Y -tree Decomposition912

Equipped with layered all-stops restrictions, we can now inductively prove that optimal913

simple extension circuits have the following nice structure: each extension variable occurs914

in an isolated read-once subformula called a Y -tree that depends only on other extension915

variables, and the output of these read-once formulas is read by a single costly gate called a916

M. Carmosino, N. Dang, and T. Jackman 25

combiner. Formally,917

▶ Definition 18 (Y-Tree Decomposition). Let G be a circuit with two distinguished sets918

of inputs: base variables X and extension variables Y . We say a triple ⟨δ, b, T ⟩, where919

δ—referred to as a combiner—is a binary gate in G, bit b ∈ {0, 1} designates an input of920

δ, and T is a sub-circuit of G rooted at the b child of δ, is admissible if the following local921

conditions are met:922

1. Each T is a read-once formula in only extension variables Y .923

2. Each T is isolated in G — gate γ is the unique gate reading from T , and it only reads924

the root of T .925

3. The sub-circuit of G rooted at the ¬b child of γ contains at least one X variable.926

A Y -Tree Decomposition of G is a set of admissible triples which are non-intersecting,927

that is, each yi ∈ Y appears in at most one T . The size of a decomposition is the number of928

tuples present in the decomposition. The weight of a Y -tree decomposition is the number of929

extension variables that are read in some T . We say a Y -tree decomposition is total if its930

weight is |Y |, i.e. every extension variable appears.931

We first remark that the binary gates spread across the read-once formulas and combiners932

in a total decomposition account for all m binary gates eliminated when substituting and933

simplifying with a key.934

▶ Theorem 19. If G is a minimal circuit for a simple extension, then G has a total Y -tree935

decomposition.936

Proof. We proceed via induction over m, the number of extension variables. When m = 0,937

the statement is vacuously true: the empty Y -tree decomposition is total for any optimal938

circuit of the base function.939

Assume the statement holds for any simple extension with k − 1 extra variables. Let Gk940

be an optimal circuit for gk, some simple extension of a function f , with k extension variables.941

By Lemma 17, there exists an all-stops layered restriction ρ such that ρ(Gk) is optimal for f .942

By definition, there exists a prefix ρ1 of ρ such that Gk−1 = ρ1(Gk) is an optimal circuit for943

a simple extension of f with k − 1 extension variables. Without loss of generality, assume yk944

is the variable substituted and eliminated by ρ1. By our inductive hypothesis, Gk−1 admits945

a total Y -tree decomposition, Yk−1. We will show how to add to/modify Yk−1 to obtain a946

total Y -tree decomposition for Gk by carefully considering the steps of ρ1, .947

By Corollary 16, ρ1 is exactly the following sequence: a single substitution, (possibly) a948

constant negation, a passing rule, and (possibly) a double negation elimination. Consider949

this passing rule, and denote by α its the main connective, κ its constant, and γ its matched950

node. Observe that (¬)yk is κ since, after substitution (and possibly constant negation), it951

is the only constant in the circuit. Let (¬)β be the matched node γ, i.e. the other input952

to α. We remark that ρ1 only impacts the local neighborhoods of nodes adjacent to α; any953

triples of Yk−1 not involving these nodes are still admissible in Gk. We modify Yk−1 in the954

following ways, depending on whether β is present in any triples.955

Adding a Triple: If β is not present in any triple, we argue that the triple ⟨α, b, T ′ = (¬)yi⟩,956

where b denotes which input of α is (¬)yi, can be added to Yk−1. It is easy to see this957

triple is admissible: since ρ is layered, β can only depend on X variables, else there are958

deeper nodes reading extension variables that must be eliminated first. However, we959

must check that all triples of Yk−1 remain admissible in Gk. The only nodes of Yk−1960

possibly impacted from Gk to Gk−1 are combiners, since only those can read (¬)β in961

Gk−1. However, these combiners still fulfill the third condition in Gk: the sub-circuit962

26 Simple Circuit Extensions for XOR in PTIME

rooted at (¬)α still depends contains X variables since (¬)α reads (¬)β. Hence all of963

these triples are admissible, and are non-intersecting—forming a total Y decomposition964

for Gk.965

Modifying a Triple: It is not hard to see that the non-intersecting requirement enforces that966

β appear in at most one triple. Furthermore, if β is present in some triple, then it must967

be an extension variable: if it is an interior binary gate of some tree T , then there are968

deeper binary gates than α that read extension variables which are eliminated later in969

the layered ρ. When β is present in some triple of Yk−1, we will need to modify its tree970

to include yk and α971

Let t = ⟨δi, bi, Ti⟩ be the triple from Yk−1 that includes β. Not only is t inadmissible in972

Gk, it is not even well-formed: wires reading nodes of Ti in Gk−1 are actually reading973

(¬)α in Gk. As the modifications to Gk by ρ1 are local, every other triple in Yk−1 remains974

admissible in Gk. We simply need to incorporate (¬)α and (¬)γ into the triple, ensuring975

the first two conditions are met. Observe that there is only one node reading (¬)α,976

as otherwise the fanout of (¬)β will have greater than one fanout in Gk−1, violating977

Corollary 13. We modify t in two ways, depending on which gate in the triple is reading978

it.979

α disconnects δi from Ti: If δj reads (¬)α, then observe it, not the root of Ti, is the980

bi child of δj . However, the sub-circuit T ′ rooted at (¬)(α) is a read-once formula in981

only extension variables. Replacing Ti with T ′ in t repairs the triple and produces a982

total decomposition.983

α disconnects β inside Ti: If a node in Ti reads (¬)α in Gk, then Ti is not actually a984

well-formed sub-circuit of Gk. However, the sub-circuit T ′ rooted at the bi child of985

δi is still read-once formula over extension variables, once we include (¬)α and (¬)yk.986

Hence ⟨γj , bj , T
′⟩ can replace t to produce a total decomposition Yk.987

◀988

D The f-Simple Extension Problem is Fixed-Parameter Tractable989

In this section we build a polynomial time algorithm for the XOR-Simple Extension Problem.990

By Lemma 14, it suffices to find a normalized circuit for g of size CC(f) +m which reads991

every extension variable.992

For exposition, recall the framing of encoding simple circuit extensions from Section 1.4.2:993

suppose g is a simple extension of f and Alice knows G, an optimal circuit for g. Alice can994

obtain an optimal circuit F computing f by simply restricting the y-variables of G with a995

key and performing gate elimination. Now consider the following communication problem:996

Bob knows F , and Alice would like to send him G using as few bits as possible. Because g is997

a simple extension of f , Alice can compute the Y -tree decomposition of optimal circuit G.998

The idea is to send Bob a sequence of instructions that tell him exactly how to graft each999

Y-Tree of G onto the gates of F .1000

D.1 Grafting Y -Trees: Key Ideas & Structural Properties1001

We begin by illustrating the “grafting” idea for the algorithm. First consider the case where1002

there is only a single Y-tree TY in the decomposition of G. Then there must be some1003

costly gate η — an origin already present in F — that is combined with TY in G. Our1004

decomposition theorem shows that every possible arrangement of this graft is depicted in1005

M. Carmosino, N. Dang, and T. Jackman 27

δ

¬

¬ ¬

ηTY

RG(η)

RG(¬η)

RG(δ)
RG(¬δ)

(a) Before any extension variable restrictions

δ

¬

¬ ¬

ηyj

RG(η)

RG(¬η)

RG(δ)
RG(¬δ)

(b) All extension variables restricted except yj

Figure 6 The local neighborhood of a combiner δ and Y -tree TY grafted on an origin η.

η

¬
RF (η)

RF (¬η)

Figure 7 The origin η after the Y -tree has been pruned.

Figure 6, which shows the local neighborhood7 of the single Y-tree in G.1006

In Figure 6, both δ and η represent costly gates that must be present, the dotted negations1007

represent NOT gates that may be present, and the cones represent connections to the rest1008

of G. The notation RG(β) means “the set of costly gates that read gate β in circuit G.”1009

These sets are depicted by shaded cones, because at least one of them must be non-empty —1010

otherwise, G would not be an optimal circuit — but we do not know which. Note how the1011

Y -tree and potential negation atop it are isolated from the rest of the circuit, except for1012

connections via the combiner gate δ. We will describe in some detail how this single graft1013

can be transmitted and sketch the issues involved in efficiently coding all grafts and Y-trees1014

for Bob.1015

First, Alice applies gate elimination to G using a prefix of a terminal and layered all-stops1016

restriction (Lemma 17), eliminating all but one of the y-variables in TY . Because TY is an1017

isolated formula in G, a single variable yj is left in G at the end of this process: the local1018

neighborhood transforms from Figure 6a to Figure 6b. Crucially, all gates outside TY are1019

unaffected. Now, Alice runs a final step of gate elimination, substituting yj according to the1020

key. The result will be as depicted in Figure 7: the local neighborhood of η in F . The key1021

observation is that Bob has perfect knowledge of this structure — it is simply a sub-circuit1022

of F . If Alice can send (1) an identifier for η (2) a “diff” between the neighborhood of η in1023

F compared to G (Fig. 6b vs. 7) and (3) a description of TY this would suffice for Bob to1024

efficiently transform F into G.1025

The most straightforward protocol would send O(log(#gates(F))) bits to identify η for1026

Bob. This is too expensive if there is more than one Y-tree in G. Recall that we can only1027

7 Think of this as “zooming in” to inspect one of the shaded circles in Figure 2.

28 Simple Circuit Extensions for XOR in PTIME

tolerate runtime of 2O(n+m) and intend to brute-force all possible codes. There could be1028

as many as m Y-trees with a single variable each and thus m origins, so brute-forcing this1029

simple code would require time 2O(m log(n)+n) for #gates(F) = O(n) — super-polynomial in1030

2(n+m) and therefore unacceptable.1031

Instead, Alice can send a #gates(F)-bit origin indicator vector χ, where χi is 1 if gate i1032

of F is the origin of some Y-tree. It is feasible to brute-force these vectors in 2O(n)-time for1033

any possible number of origins given a linear upper bound on the circuit size of f . Returning1034

to the case where G has a single Y-tree, Bob identifies η by reading the single 1-bit of χ. For1035

the local neighborhood of η, the following information must be transmitted to summarize1036

the “diff” between F and G:1037

1. The costly functions computed by gates η and δ,1038

2. presence or absence of each possible NOT gate depicted in Figure 6b,1039

3. whether η is connected to the left or right input of δ,1040

4. the description of TY , and1041

5. the sets of gates that read from each individual element of the graft, RG(·).1042

Items 1 - 3 can be described by a constant-length bitstring, depending only on the enumeration1043

of all possible “graft” sub-circuits implied by our characterization of gate elimination. We1044

code the exact Y-Tree TY (item 4) explicitly for now and eliminate it later. Here, we are1045

concerned with how to efficiently code the sets RG(·) without sending explicit “pointers” to1046

nodes of F , which remain too expensive per the discussion of transmitting η above.1047

To code these wire movements efficiently, Alice will exploit the relationship between1048

the gates reading from η in F and the gates reading from η in G as determined by gate1049

elimination. Bob knows the contents of RF (η) and RF (¬η) — the sets of costly gates reading1050

from (¬)η in F . Collect the gates that read from the graft, in both G and F :1051

RG = RG(η) ∪RG(¬η) ∪RG(δ) ∪ RG(¬δ)1052

RF = RF (η) ∪RF (¬η)1053

Observe that RG ⊆ RF because during the single run of gate elimination that transforms1054

Figure 6b into Figure 7, all the wires reading the eliminated gate δ are “inherited” by η.1055

Furthermore, Bob knows η from χ and thus can reconstruct RF , so Alice can identify any1056

wire relevant to the graft by coding “the j-th element of RF .” Here we must apply the1057

assumption that optimal circuits for f have at most constant fanout, independent of n, to1058

bound the length of these relative wire-identifiers by a constant. Thus, Alice can identify1059

exactly which wires should be moved from η to read (¬)δ in G. Inspecting Figure 6b again,1060

she can also code where they move using constantly many bits, because there are only two1061

options: reading from ¬δ or δ directly.1062

This discussion has outlined the base case of our encoding/decoding argument, where only1063

a single Y-tree is transmitted to Bob. Notice that, if there are multiple combiner-disjoint1064

Y-trees in G, an essentially identical strategy could encode all these Y-trees. However, reverse1065

gate elimination can create somewhat more complex structures: specifically, we can have1066

combiners δi grafted onto a distinct combiner δj , instead of a gate η that was present in the1067

original circuit F . These compounded combiners correspond exactly to the “adding a triple”1068

case in the proof that Y -Tree decompositions exist (Theorem 19) where α occurs between β1069

and an existing combiner.1070

Even so, Alice can use the fact that every combiner δi has a unique origin η to identify1071

the “first” combiner grafted onto η and instruct Bob to add subsequent η-derived combiners1072

in depth-respecting order. We now prove the required properties of origins and combiners.1073

M. Carmosino, N. Dang, and T. Jackman 29

▶ Definition 20 (Original & Originating Gates). Let G and F be circuits, ρ be an all-stops1074

restriction, and suppose ρ(G) = F . We call a gate β of G original if it is not garbage1075

collected by ρ — i.e., if β ∈ F . Furthermore, let G have a Y -tree decomposition with elements1076

⟨δ, b, T ⟩. The origin of each δ is the depth-maximal original gate η such that X variables1077

occur in G[η] and there is a path from η to the output of G through δ.1078

The origin of a combiner can be depth-trivial: a single input gate xi or the unique output1079

gate are both valid origins. Intuitively, if η is the origin of δ, then δ “takes” wires from1080

η when it is grafted into the circuit. When the maximum fanout of an optimal circuit is1081

constant, this imposes a hard limit on the number of compounded combiners that share the1082

same origin.1083

▶ Lemma 21 (Every Combiner has a Unique Origin). Suppose G is a circuit with Y -tree1084

decomposition D, and let ⟨δ, b, T ⟩ be an arbitrary element of D. Then δ has exactly one1085

origin in G.1086

Proof. We argue by induction on the structure of G, exploiting that the DeMorgan basis1087

has fan-in two. We will walk “down” the circuit from δ until an original gate is encountered.1088

By definition, δ has only two inputs: input b leads to a Y -tree, and input ¬b leads to a1089

sub-circuit containing X variables. Thus we must go down the ¬b argument to find the1090

origin. Argument ¬b = gate β is either another combiner in the decomposition or not — if β1091

is not a combiner, then it is an original gate, and thus unique because the path to β from1092

δ was fully determined. β is topologically maximal because it was the first non-combiner1093

encountered walking “down” the circuit in topological order. Then, if argument ¬b is another1094

combiner, we are done by induction: there is simply another deterministic choice to find a1095

sub-circuit where X variables occur, because argument b of β is also a Y -tree. ◀1096

Finally, observe that there are only constantly-many ways to eliminate a binary gate by1097

a simple simplification (Claim 16) as depicted in Figure 8. This follows by brute-forcing all1098

possible sequences of simple simplifications around eliminating one costly gate, formalizing1099

the idea of a particular “graft” sub-circuit from earlier in this section: call each possible1100

realization of sub-circuits a widget.1101

δ

y

δ

¬

y

δ

y ¬

δ

¬

y ¬

Figure 8 The four possible widgets in a splice code (up to symmetry). The node labeled y

represents which child of the combiner δ is the Y -tree. A dotted edge not leading to another node
represents one (or more) possible connections to a costly gate outside of the widget. A solid edge not
leading to another node represents one (or more) guaranteed connections to a costly gate outside of
the widget.

30 Simple Circuit Extensions for XOR in PTIME

D.2 Grafting Y -Trees: Efficient and Explicit Encodings1102

Suppose η is a gate in some circuit C, and let the gates ζ1, . . . , ζ≤ℓ read η in C. We use1103

η-relative fanout-coding to name another gate β in a circuit C ′ obtained by transforming C1104

by writing an ℓ-bit vector v where:1105

vi(β, η) =
{

1, if ζi reads β in C ′

0, otherwise
1106

Trivially, when C = C ′ and we fanout-code η relative to itself, the result is 1fo(η) ◦ 0ℓ−fo(η).1107

Suitability for fanout-coding is the prime motivation of our requirement that gate identifiers1108

are never mutated (only recycled or discarded) by circuit manipulation.1109

▶ Definition 22 (Splice Codes). Suppose F is a circuit with maximum fanout ℓ. A splice code1110

E is a sequence of tuples that encode a transformation of F into G, a circuit for a simple1111

extension of F . The splice code begins with an Origin Indicator Vector: a bitvector of1112

length CC(f) where entry i is set to 1 iff gate i of F is an origin. Then, for each origin η,1113

a sequence of splices follows — one splice per combiner originating in η. A splice is:1114

1. Target Gate: Which gate should be grafted onto? Written as η-fanout-relative code.1115

2. Selected Wires: Which wires does the spliced widget take from the target gate? Written1116

as ℓ-bit indicator vector, where 1-bits must be a subset of the target gate’s code.1117

3. Widget: A constant number of bits naming one of constantly-many combiner widgets.1118

4. Wire Moves: Map from taken wires taken to gates of the widget: at most (ℓ − 1)1119

constant-length identifiers.1120

5. Explicit Y -Tree: A fully specified read-once formula in the Y variables.1121

▶ Theorem 23 (Splice Codes for Simple Extensions). Suppose g ∈ Fn+m is a simple extension1122

of f ∈ Fn and let G̃ be an isomorphism class of minimal circuits for g. Then, there is1123

an “unlocked” isomorphism class UL(G̃) of minimal circuits computing f such that, for1124

every representative F of UL(G̃), there is a splice code E such that an efficient algorithm1125

Decode(F,E) prints a circuit in the isomorphism class G̃. The length of E is O(ℓ · |F | ·m ·1126

bits(Y)), where ℓ is the maximum fanout of F and bits(Y) is the number of bits required to1127

code a Y -tree on m variables.1128

Proof. Take a representative G of the isomorphism class of ciurcits G̃ with gates named1129

such that they are compatible with depth and a topological order. Let D be the Y -tree1130

decomposition of G (Theorem 19) and let ρ be the particular all-stops restriction of G implicit1131

in the proof of Theorem 19 such that F = ρ(G) computes f and F is optimal for F . We will1132

“reverse” ρ to obtain a circuit isomorphic to G from F .1133

First, list all the origins in G — it is immmediate from the definition and inspecting ρ1134

that this is possible. Now, if the set of combiners associated with each origin is of size 1, it is1135

clear that the trivial fanout-relative code is used to set the Target Gate for each combiner,1136

and the legnth lower bounds are immediate because the overhead of encoding sequences is1137

linear, and all fields of the sequences are linear in ℓ, a constant, or proportional to the size1138

of a particular Y -tree. Origin gates are never named explicitly; the order of sequences of1139

splices suffices to associate them with the appropriate splice-sequence.1140

Suppose now that some gates of G originate q combiners where 1 < q ≤ m and fix an1141

arbitrary such origin η. To order the splices, perform breadth-first-search starting from1142

η in G and observe which wires of η have been “spliced” with which combiners in each1143

stop of the all-stops restriction ρ. Using this ordering and the sub-sequences of ρ where1144

combiners originating in η are eliminated, observe that at each step there is there is a set of1145

M. Carmosino, N. Dang, and T. Jackman 31

maximally-shallow available combiners that could be grafted to: those between η and the1146

output of the circuit which feed into a gate that used to be fed by η directly.1147

Each available combiner must be uniquely identified by an η-relative fanout-code, because1148

otherwise an intermediate normal circuit ρ would not be size-optimal: we could restrict1149

using the key embedded in ρ to find that the same gate must read η twice, which triggers a1150

resolving gate-elimination. Therefore, even compound-combiners can be uniquely regenerated1151

by splice codes.1152

To conclude the proof, observe that the isomorphism class of F is exactly UL(G̃), as1153

desired, because all coding operations relied only on being given a circuit isomorphic to F1154

whose gates were named in depth-sorted and thus topological order. This is because our1155

formalization of circuit manipulation never introduces “fresh” identifiers; it only deletes or1156

recycles them. ◀1157

D.3 The Final Ingredient: Truth-Table Isomorphism1158

There are two issues with trivial brute-force over splice codes. First, there are too many1159

base circuits for XORn: there are at least as many optimal XORn circuits as there are1160

labeled rooted binary trees with n leaves. Let Cn be the nth Catalan number; there are1161

n!Cn−1 = 2ω(n log n) labeled rooted binary trees [42]. Similarly, there are m!Cm−1 explicit1162

Y -trees reading all m variables. However, in both expressions, the dominating factorial terms1163

n! and m! arise from permuting the labels of the variables. But two circuits which can be1164

transformed into one another by permuting inputs compute truth-table isomorphic functions.1165

▶ Definition 24 ([30, 3]). Two functions f, g ∈ Fn are truth-table isomorphic if there exists1166

a permutation π on [n] such that g(x) = f(π(x)).1167

It is straightforward to connect truth-table isomorphism with permuting circuit inputs.1168

▶ Observation 25. The following two statements, the first a universal statement and the1169

second existential, describe the relationship between permuting circuit variable labels and1170

truth-table isomorphism.1171

(1) If a Boolean function f ∈ Fn is truth-table isomorphic to another Boolean function g ∈ Fn1172

then any circuit for f can be transformed into some circuit for g by relabeling input xi1173

with xσ(i) for all i ∈ [n] using some permutation σ on [n].1174

(2) If a given circuit for f ∈ Fn can be transformed into a circuit for g ∈ Fn by relabeling1175

input xi with xσ(i) for all i ∈ [n] using some permutation σ on [n] then f is truth-table1176

isomorphic to g.1177

Proof. We first prove (1). Let π be the witnessing permutation between f and g, i.e.1178

f(x) = g(π(x)). Observe that f(π−1(x)) = g(π(π−1(x))) = g(x). Let F be any circuit for1179

f . Let G be the circuit obtained by relabeling each input xi by xπ(i). We wish to argue G1180

computes g. Observe that evaluating g on input x is the same as evaluating F on π−1(x)1181

since xπ(π−1(i)) = xi. Therefore G(x) = F (π−1(x)) = f(π−1(x)) = g(x).1182

For (2), fix some optimal circuit F and let σ be the witnessing permutation used to1183

relabel F to obtain G, a circuit for g. We have f(x) = F (x) = G(σ−1(x)) = g(σ−1(x)). As1184

σ is a permutation on [n], σ−1 is also a permutation on [n] and thus f and g are truth-table1185

isomorphic. ◀1186

The implication is that do not need to try every possible base XORn circuit or even try1187

every explicit splice code. We can take an unlabeled base circuit and unlabeled Y -trees and1188

assign variables arbitrarily. We then just need to check whether the function our reconstructed1189

32 Simple Circuit Extensions for XOR in PTIME

circuit computes is isomorphic to g. This is feasible because (rather surprisingly) truth-table1190

isomorphism testing can be done in polynomial time.1191

▶ Theorem 26 (Corollary 1.3 of [30]). Given the truth-tables for two Boolean functions,1192

testing whether they are equivalent under permutation of variables can be done in time cO(n)
1193

where c is a constant.1194

To this end we formally define “unlabeled” optimal circuits.1195

▶ Definition 27 (Open Optimal Circuit). A circuit is open if all of its inputs are unlabeled.1196

An open circuit is optimal for a Boolean function f if there exists some labeling of its’ inputs1197

so that the resulting circuit is an optimal circuit for f .1198

D.4 An Efficient Simple Extension Problem Solver for XOR1199

The following algorithm, when given L, a complete list of representatives from each open1200

isomorphism class of optimal circuits for f , decides the f -Simple Extension Problem. By1201

“implicit splice code,” we mean a splice code without the Y -trees specified.1202

Algorithm 2 Ckt-SE-Solver(n ∈ N, g ∈ Fn+m, L)

1: Verify ∃ρ ∈ {0, 1}m such that g|ρ ≡ f and return False if not
2: Verify g is non-degenerate and return False if not
3: for each open circuit F in L do
4: s← number of costly gates in F

5: label the open nodes of F by an arbitrary permutation of x1, . . . , xn

6: for each implicit splice code E of length at most m+ s do
7: d← number of combiners recorded in E

8: for each a1, . . . ad ∈ N s.t.
∑d

i=1 ai = m do ▷ Valid distribution of variables to
Y -trees

9: for each d-tuple of read-once formulas with a1, . . . ad open nodes do
10: label the open nodes of each read-once formula by an arbitrary permutation

of y-inputs
11: insert the read-once formulas into combiner instructions of E in lexico-

graphic order
12: G̃← Decode(F,E)
13: if tt(G̃) ≃ tt(g) then ▷ Test using the procedure of Theorem 26
14: return True
15: return False

▶ Theorem 28. Given L is a list with a representative from every optimal open circuit class1203

of f , Algorithm 2 decides the f -Simple Extension Problem in time |L| · 2O(ℓ(s+m)) where ℓ is1204

the maximum fanout of any node in any circuit in L and s = CC(f).1205

Proof. We first prove completeness, i.e. that if g is a simple extension then Algorithm 21206

returns true. By definition of simple extension, the checks in steps 1 and 2 pass. Since g1207

is a simple extension, CC(g) = s + m; fix any optimal circuit G for g. By Theorem 23,1208

there is an explicit splice code Ê and circuit isomorphism class representative F̂ such that1209

Decode(F̂ , Ê) produces a circuit Ĝ isomorphic to G. Let T̂1, . . . T̂t be the explicit Y -trees1210

in Ê. During some iteration of the algorithm (1) the implicit splice code will be consistent1211

with E and (2) F and T1, . . . Tt, the chosen open read-once formulas, will be isomorphic to1212

M. Carmosino, N. Dang, and T. Jackman 33

open(F̂), open(T̂1), . . . open(T̂t) (where open(C) is circuit C with its input labels stripped1213

away). In this iteration, let F ′ and E′ be the arbitrary explicit completion of the open circuit1214

F and implicit splice code E chosen by the algorithm. Let G′ = Decode(F ′, E′) and observe1215

open(G′) is isomorphic to open(Ĝ). Thus there is a permutation of the variables of G′ such1216

that the resulting circuit is isomorphic to Ĝ. By part (2) of Observation 25, the function1217

computed by G′ is truth-table isomorphic to g and thus the algorithm accepts.1218

For soundness, observe that if the algorithm accepts then it passed step 1 and 2 which1219

demonstrate the existence of a key and non-degeneracy of g. Finally in steps 12 and 13,1220

the algorithm must have constructed a constant-free circuit of size s+m which computes a1221

function truth-table isomorphic to g. Applying part (1) of Observation 25 we can transform1222

this circuit into a circuit for g by relabeling inputs. This constant-free circuit of size s+m1223

for g, in conjunction with the fact f is non-degenerate and the existence of a key, guarantees1224

CC(g) = s+m by Lemma 14. Therefore, by definition, g is a simple extension of f .1225

For the running time, we first observe that steps 1 and 2 take 2O(s+m) since the algorithm1226

just verifies whether one of the 2m restrictions yields tt(f) (and s = Ω(n)) and verifies for1227

each of the m extension variables there is an assignment where flipping the value of the1228

variable changes the output of g. There are then |L| iterations where each run in time1229

2O(ℓ(s+m)) where ℓ is the maximum fanout of any node in any circuit in L as the algorithm1230

builds this number of explicit splice codes. The algorithm tries every explicit splice code1231

where y-inputs are labeled arbitrarily (say, in increasing order). The number of such codes is1232 ∑m
d=1 r(d) where r(d) is the number of such splice codes with d combiners. We see1233

r(d) =
∑

a1+...+ad=m
ai∈N+

d∏
j=1

t(aj),1234

where t(aj) is the number of read-once formulas with aj open nodes.1235

We first bound t(aj). A number of read-once formula with aj open nodes corresponds to1236

the number of rooted binary trees where each internal node is labeled ∧ or ∨ and each edge is1237

weighted 0 or 1 (representing if there is a negation between those two nodes). The number of1238

unlabeled rooted binary trees with n leaves is Cn−1—the (n−1)th Catalan number [42]. Thus1239

t(aj) = Caj−1 · 2aj−1 · 22(aj−1)+1 = Caj−1 · 22aj where the latter factors are from labeling the1240

internal nodes and edge weights (including the output edge) respectively. Since Caj−1 < 4aj ,1241

we have t(aj) < 25aj [42]. Since the aj sum to m, then
∏d

j=1 t(aj) < 25m = 2O(m). The1242

number of solutions to a1 + . . . + ad = m where aj > 0 is
(

m+d−1
d−1

)
[8]. Notice that1243 (

m+d−1
d−1

)
≤

∑m+d−1
i=0

(
m+d−1

i

)
= 2m+d−1 [8]. Since k < m then this is 2O(m). Therefore1244

r(d) < 2O(m) and thus the number of explicit splice codes is at most m2O(m) = 2O(m).1245

Once an explicit splice code is constructed, constructing G̃ with the decoder takes1246

poly(s+m) time and testing truth table isomorphism takes O((s+m)2) ·2O(n+m) ·2O(n+m) =1247

2O(n+m) as the algorithm has to write the truth-table and then run the algorithm from1248

Theorem 26. Since s = Ω(n) this takes 2O(s+m). Overall the running time is therefore1249

|L| · 2O(ℓ · (s+m)). ◀1250

In general, |L| may be exponential in |tt(g)|, ℓ may be ω(1), and s may be superlinear in1251

n. As such Algorithm 2 is not a polynomial time algorithm for the Simple Extension problem1252

in general. However, as noted in Corollary 33, these parameters for XORn are tractable. This1253

yields our main theorem:1254

▶ Corollary 29. The Simple Extension Problem with the base function f = XORn is in P1255

34 Simple Circuit Extensions for XOR in PTIME

E Optimal XOR Circuits Are Binary Trees of XOR2 Sub-Circuits1256

Algorithm 2 of Section D can only rule out a particular f from showing hardness for1257

MCSP via f -SEP when the optimal circuits for f are well-understood. It requires an exact1258

characterization of the set of all optimal circuits—a requirement that currently is rarely1259

fulfilled.1260

One of the earliest studied explicit Boolean functions, XOR, is one of the only functions1261

for which we even have partial fulfillment of this ornery prerequisite. Recall the definition1262

XOR, the parity function.1263

▶ Definition 30 (XOR). For x ∈ {0, 1}n, XORn(x) =
{

1 if an odd number bits of x are 1
0 otherwise.

1264

Schnorr proved one of the first explicit circuit lower-bounds on XOR.1265

▶ Theorem 31 ([39]). XORn requires at least 3(n− 1) gates in the DeMorgan basis.1266

This lower-bound in fact has a matching upper bound and the construction is straightfor-1267

ward: take any binary tree with n leaves labeled x1, . . . , xn where the n− 1 interior nodes1268

have been labeled by ⊕ and replace the ⊕ nodes with any circuit of size 3 that computes1269

XOR2. Furthermore, since ¬ gates do not count towards the circuit size, any circuit for1270

XORn can easily be transformed into an equal size circuit computing ¬XORn and vice versa.1271

Combining these observations yields:1272

▶ Corollary 32 ([39, 43]). A circuit C computing (¬)XORn is optimal if and only if |C| =1273

3(n− 1).1274

However, this leaves open how those 3(n− 1) gates can be arranged. Are there optimal1275

circuits for XOR that do not follow the upper-bound construction? Previous work showed1276

that in R, all optimal circuits follow this construction: optimal XORn circuits are binary1277

trees of (n− 1) XOR2 sub-circuits [25]. In this section, we extend this characterization, as1278

seen in Figure 1, to D.1279

▶ Theorem (Informal Statement of Theorem 37). Optimal (¬)XORn circuits in D partition1280

into trees of (n− 1) (¬)XOR2 sub-circuits.1281

This structural characterization implies the crucial combinatorial parameter bounds that1282

are required to apply Algorithm 2 and therefore rule out the possibility of proving hardness1283

of MCSP via XOR-SEP.1284

∧
¬

∧∨

x1 x2

XOR2

∨
¬

∨∧

x1 x2

¬XOR2

∨
∧ ∧

¬ ¬

x1 x2

XOR2

· · ·

Red’kin Basis

DeMorgan Basis

⊕

≡
≡

⊕ ⊕

XOR6

≡
≡ ≡

⊕ ⊕

¬XOR6

· · ·

DeMorgan & Red’kin Bases

M. Carmosino, N. Dang, and T. Jackman 35

▶ Corollary 33. The following properties hold for XORn, where n ≥ 11285

The size of optimal circuits computing XORn is linear (Corollary 32).1286

The maximum fan-out of such circuits is a constant.1287

The number of optimal circuits for XORn, up to permutation of variables, is 2O(n).1288

Before we prove our main result of this section, we introduce some auxiliary facts that1289

we will repeatedly require.1290

E.1 Basic Properties of XOR1291

We first give two basic facts about (¬)XORn that are immediate consequences of the definition.1292

▶ Fact 1 ((¬)XOR is Fully DSR). XORn is fully downward self-reducible, i.e. for any input1293

x ∈ {0, 1}n, any non-empty sets S and T partitioning [n],1294

XORn(x) = XOR2(XOR|S|(xS),XOR|T |(xT))1295

where xS = {xi : i ∈ S} and xT = {xi : i ∈ T}. Furthermore, this means for any assignment1296

αS of variables in xS, XORn(x)|αS
= (¬)XOR|T |(xT). The same is also true of ¬XORn(x)1297

▶ Fact 2 (All Subfunctions of (¬)XOR are Non-Degenerate). (¬)XORn not only depends on1298

all of its inputs but it is also maximally sensitive, i.e. for all i ∈ [n], for inputs x ∈ {0, 1}n,1299

(¬)XORn(x) ̸= (¬)XORn(x⊕ ei).1300

Combining Facts 1 and 2, if we substitute for a single variable in a (¬)XORn circuit1301

where n ≥ 2 are guaranteed to get a circuit which computes (¬)XORn−1. Applying the tight1302

version of Schnorr (Corollary 32) we see that subsequent simplification cannot remove more1303

than three costly gates. Formally,1304

▶ Corollary 34 (Elimination Rate Limit for Optimal XOR Circuits). Let C be an optimal circuit1305

computing (¬)XORn where n ≥ 2. Let C ′ be the circuit after substituting xi = α for some1306

i ∈ [n] and α = {0, 1} and applying simplifying. We have that |C ′| ≥ |C| − 3 and C ′ is not1307

constant.1308

We will repeatedly apply this corollary in our proof: deviation from the prescribed1309

structure will often allow us to substitute and remove more than three distinct binary gates.1310

The other main source of contradictions will be substitutions and rewrites that disconnect1311

inputs (violating Fact 2) or that leave inputs with exactly one costly successor. This violates1312

the fact that XORn reads each of its inputs twice.1313

▶ Lemma 35 ((¬)XOR is Read-Twice (Folklore)). Let C be a normalized optimal circuit1314

computing (¬)XORn where n ≥ 2. The fanout of every variable C is exactly 2.1315

▶ Remark 36. In the proofs of this section, we will omit negations whenever reasonable, since1316

we are more interested in the binary gates which solely contribute to circuit size in D. We1317

write α is a costly successor to β to mean (¬)β is an input to binary gate α.1318

Proof. Let C be an optimal normalized circuit computing (¬)XORn for arbitrary n. Suppose1319

there is a variable xi whose fanout is not 2. There are two cases: (1) the fanout of xi is 11320

and (2) the fanout of xi is at least 3.1321

(1) Take α, the assumed unique costly successor of xi and let β be the input to α. Let X ′1322

be the set of input variables that β depends on (i.e. that are present in the sub-circuit rooted1323

at β). Observe that xi ̸∈ X ′. Consider the truth-table of the sub-circuit rooted at β and1324

36 Simple Circuit Extensions for XOR in PTIME

observe it must be a non-constant function of the variables of X ′. If it were constant, then we1325

could replace β with this constant and remove α from the circuit via a gate elimination rule,1326

reducing the size of the circuit and violating optimality. Therefore, there is an assignment of1327

the variables in X ′ such that if we substitute and simplify, eventually a constant will feed1328

into α that allows us to remove it with a fixing rule. This disconnects xi from the circuit,1329

which violates Fact 2 since we did not substitute for xi and thus the the resulting parity1330

function must still depend on it.1331

(2) Suppose xi has more than two costly successors. Let α1, α2 and α3 be three of these1332

and without loss of generality assume these are indexed in descending depth. Observe that1333

(¬)α3 is not the output of the circuit as otherwise we could substitute xi to be some constant1334

that fixes α3 and make the circuit constant. This would violate the rate limit on eliminations1335

for optimal XOR circuits (Corollary 34). Let β3 be the costly successor of α3 and notice1336

that, since α1, α2 and α3 are in descending depth order, β3 is a new distinct gate. Thus if1337

we substitute xi to fix β3 and simplify, we can remove α1, α2, α3 and β3 with a passing or1338

fixing rule applying to β3 after applying a fixing rule to β3. This violates Corollary 34.1339

Both cases reach a contradiction and therefore every input has two costly successors in1340

any normalized optimal circuit computing (¬)XORn. ◀1341

E.2 Optimal (¬)XORn Circuits Are Binary Trees of (¬)XOR2 Blocks1342

We now have the tools required to show that binary trees of optimal (¬)XOR2 subcircuits1343

are the only optimal circuits for computing XORn. Formally,1344

▶ Theorem 37. Optimal (¬)XOR circuits partition into trees of (¬)XOR2 sub-circuits —1345

even when NOT gates are free. Formally, for every circuit C with the minimum number of1346

AND,OR gates computing XORn, there is a partition of the gates of C into (n− 1) blocks1347

together with a multi-labelling of each wire w in C by tuples ⟨i, t⟩ where t ∈ {in, out, core}1348

describes the role that w plays in block i, such that:1349

1. Each block is a three-gate XOR2 sub-circuit, with distinguished input, output, and core1350

wires.1351

2. The input wires of every block are also the output wires of a different block or the input1352

gates.1353

3. Contracting all the core wires of C results in a binary tree.1354

The proof will proceed via induction, however most of the work will be in proving that we1355

can find a (¬)XOR2 block in any XORn circuit which we can “peel off” with a single variable1356

substitution. The resulting circuit will compute XORn−1 allowing us apply our inductive1357

hypothesis in order to get a partition we can lift back up to the original circuit. For this1358

reason we separate this out as a lemma.1359

▶ Lemma 38. Let C be a circuit computing XORn for n ≥ 3. There exists two inputs xi1360

and xj that feed into a block B in C as described in Theorem 37.1361

Proof. Let C be an optimal normalized circuit computing XORn where n ≥ 3. We first1362

identify two variables which will be inputs to block B (which we will later prove that1363

B ≡ (¬)XOR2). Let α be a maximum depth binary gate of C. As in the proof of Theorem 31,1364

we know that α must read two distinct inputs xi and xj for some i, j ∈ [n] since otherwise1365

we can apply a simplification rule and remove α, which contradicts that it is an optimal1366

normalized circuit. Our local view of α can be seen in Figure 9, where dashed arrows indicate1367

one (or more) adjacent binary gates whose existence has not yet been established.1368

M. Carmosino, N. Dang, and T. Jackman 37

α

xi xj

Figure 9 The local neighborhood of α

By Lemma 35, we know that both xi and xj have exactly two costly successors. Let βi1369

be the other successor of xi. We first observe that neither α nor βi can be the output of the1370

circuit: if they were, some substitution of xi would fix the output and leave the resulting1371

circuit constant, violating Corollary 34. Hence, α and βi must each feed into at least one1372

more costly gate. Let ν be a costly gate fed by α. We remark that ν could be βi and hence1373

in Figure 10, we denote ν with a dashed node until we establish ν ̸= βi.1374

α

ν

xi

βi

xj

Figure 10 Our view after establishing βi ̸= α and neither are the output

We first show that ν is the only successor of α. Towards a contradiction, suppose α also1375

feeds other gates besides ν. If it feeds more than one other gate, then substituting xi to fix1376

α immediately eliminates more than three gates. Hence, it can at most feed one more gate1377

ν′. In particular, we must analyze two cases depending on whether or not βi is distinct from1378

ν and ν′. These cases can be seen in Figure 11. In both cases, we can eliminate more than 31379

costly gates, violating Corollary 34.1380

1. Assume βi is distinct from ν and ν′. Fixing α with xi will eliminate four distinct gates,1381

α, βi, ν, ν
′.1382

2. Assume βi is not distinct from ν and ν′. Without loss of generality, assume βi = ν′.1383

Substituting xi to fix α also fixes βi since both of its inputs are now constants. If βi has1384

any costly successors besides ν then we are done, since that eliminates at least four gates1385

(α, ν, βi, and any distinct successor). If βi only feeds into ν, then ν also becomes fixed.1386

Hence, ν cannot be the output of the circuit and thus it must have at least one costly1387

successor that is distinct from α, ν and βi. This successor can also be eliminated from1388

our substitution.1389

We now show that ν and βi are distinct. Assume otherwise, then fixing α by substituting1390

xi also fixes βi = ν, which we know is not the output of the circuit. This eliminates at least 31391

(and therefore exactly three) gates (α, βi, and βi’s successor which we will call υ) and results1392

38 Simple Circuit Extensions for XOR in PTIME

α

ν′
ν

xi

βi

xj

(a) βi is distinct from ν′

α

ν

xi

βi

xj

(b) βi is not distinct from ν′

Figure 11 The two cases if α feeds two gates

in an optimal XORn−1 circuit. We now consider the other gate fed by xj which we will call1393

βj . Again, there are two cases as seen in Figure 12: either βj is distinct from υ or they are1394

the same.1395

α

xi

βi

υ

xj

βj

α

xi

βi

υ

xj

βj

(a) βj is distinct from υ

α

xi

βi

xj

βj

(b) βj is not distinct from υ

Figure 12 The two cases if ν = βi

If βi does not also feed into βj , then xj feeds only βj in the resulting circuit contradicting1396

Lemma 35. If βj is fed by βi, then consider instead substituting xj to fix βj . Observe that βj1397

is not the output of the circuit, and hence fixing it eliminates four gates: α, βi, βj , and βj ’s1398

costly successors. In both cases we reach a contradiction, hence βi ≠ ν. Furthermore, notice1399

that βi cannot be the output gate and it must have only one costly successor. Otherwise,1400

using xi to fix βi would eliminate at least four gates: α, βi, and the costly successors of βi.1401

Hence, we arrive at the local view around h as shown in Figure 13.1402

Now, if we fix α using xi, then α, βi, and ν are eliminated and thus must be the only1403

gate that are eliminated. Thus, if βj , the other successor of xj is distinct from these three1404

gates, then xj is left with one costly successor in the resulting circuit computing XORn−11405

thus violating Lemma 35. Hence βj must be one of βi or ν. We will show it must be βi.1406

Suppose, for the sake of contradiction, that βj = ν. We can see that βi must be fed by1407

ν, otherwise we could substitute xj to fix α and the resulting XORn−1 circuit only reads xi1408

once. Now that βi is fed by ν, if we substitute xi to fix βi, then this eliminates βi, α and ν1409

M. Carmosino, N. Dang, and T. Jackman 39

α

ν

xi

βi

xj

βj

Figure 13 Our view after establishing ν ̸= βi

and disconnects xj entirely from the resulting circuit, but the resulting (¬)XORn−1 circuit1410

must still depend on xj .1411

We now have that βj = βi—let us call the gate β. Recall β has exactly one costly1412

successor, and if this costly successor isn’t ν and is another gate then fixing α with xj1413

eliminates three gates (α, β, ν) but leaves xj with exactly one costly successor it inherited1414

from β. This is a contradiction, and hence β must feed ν which yields a block B as shown in1415

Figure 14. ◀1416

ν

α β

xi xj

Figure 14 The local area around xi and xj form a block B.

We now provide the proof of Theorem 371417

Proof of Theorem 37 using Lemma 38. We prove this via induction. For n = 1 and n = 21418

the theorem trivially holds: (¬)xi is the unique normal optimal circuit for (¬)XOR1 and1419

normal optimal (¬)XOR2 circuits trivially define a single block.1420

Assume the statement holds for some k − 1 ≥ 2. Let C be a normal optimal circuit1421

computing (¬)XORk for k ≥ 3. By Lemma 38, we know C must have a block B that is fed1422

by two distinct inputs (¬)xi and (¬)xj . Let the three gates be α, β, and ν where (¬)ν is1423

the output gate of B. We label the wires from (¬)xi and (¬)xj as in, the wires from (¬)ν1424

as out and all other internal wires of B as core. We first need to partition the rest of the1425

circuit into blocks and ensure that the two out wires are in wires to the same block in the1426

rest of C.1427

If we substitute xi = b to fix α and simplify, we see that xj ’s successors are replaced1428

by (¬)ν’s successors and that the three costly gates in B have been eliminated. Therefore1429

the circuit computes (¬)XORk−1 and is optimal. Applying the inductive hypothesis, we can1430

40 Simple Circuit Extensions for XOR in PTIME

partition the remaining circuit into blocks which we lift back to the original. Notice that1431

xj ’s new successors are in the same block and therefore in C, (¬)ν’s successors are also in1432

the same block as desired.1433

It remains to prove that B computes (¬)XOR2. If we substitute xi = b to fix h and rewrite1434

as above we see that B reduces to (¬)xj , i.e. B(b, xj) = (¬)xj . We argue that if we instead1435

substitute xi = 1− b, then B would also reduce to (¬)xj . It cannot reduce to a constant as1436

otherwise C, which now computes XORk−1 does not depend on xj , contradicting Fact 2. We1437

also observe B cannot reduce to just xj in both cases (or ¬xj in both cases), as otherwise1438

we could replace B with xj (or ¬xj) and C would still correctly compute XORn with three1439

fewer gates — contradicting that C is optimal. Therefore B(1− b, xj) = ¬B(b, xj) and the1440

only binary Boolean functions that satisfy these two equations are XOR2 and ¬XOR2. ◀1441

	1 Introduction
	1.1 Our Results and Contributions
	1.2 Related Work
	1.3 Discussion and Future Directions
	1.4 Proof Techniques
	1.4.1 The Structure of Optimal XOR Circuits
	1.4.2 A Fixed-Parameter Tractable Simple Extension Solver
	1.4.3 Paper Outline

	2 Revisiting ETH hardness for MCSP* via Simple Extensions
	2.1 The f-Simple Extension Problem
	2.2 An Explicit Reduction BPIS from to f-SEP*

	A Circuits
	B Gate Elimination
	C Structural Properties of Optimal Simple Extension Circuits
	C.1 Restrictions With ``Speed Limits'' on Gate Elimination
	C.2 Y-tree Decomposition

	D The f-Simple Extension Problem is Fixed-Parameter Tractable
	D.1 Grafting Y-Trees: Key Ideas & Structural Properties
	D.2 Grafting Y-Trees: Efficient and Explicit Encodings
	D.3 The Final Ingredient: Truth-Table Isomorphism
	D.4 An Efficient Simple Extension Problem Solver for XOR

	E Optimal XOR Circuits Are Binary Trees of XOR2 Sub-Circuits
	E.1 Basic Properties of XOR
	E.2 Optimal (¬)XOR Circuits Are Binary Trees of (¬)XOR2 Blocks

