20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Simple Circuit Extensions for XOR in PTIME

Marco Carmosino &@®

MIT-IBM Watson Al Lab, Cambridge, MA, USA
Ngu Dang &

Boston University, Boston, MA, USA

Tim Jackman S0
Boston University, Boston, MA, USA

—— Abstract

The Minimum Circuit Size Problem for Partial Functions (MCSP*) is hard assuming the Exponential
Time Hypothesis (ETH) (Ilango, 2020). This breakthrough hardness result leveraged a charac-
terization of the optimal {A,V, -} circuits for n-bit OR (OR,) and a reduction from the partial

f-Simple Extension Problem where f = OR,,. It remains open to extend that reduction to show
ETH-hardness of total MCSP. However, Ilango observed that the total f-Simple Extension Problem
is easy whenever f is computed by read-once formulas (like OR;). Therefore, extending Ilango’s
proof to total MCSP would require one to replace OR,, with a slightly more complex but similarly
well-understood Boolean function.

This work shows that the f-Simple Extension problem remains easy when f is the next natural
candidate: XOR,,. We first develop a fixed-parameter tractable algorithm for the f-Simple Extension
Problem that is efficient whenever the optimal circuits for f are (1) linear in size, (2) polynomially
“few” and efficiently enumerable in the truth-table size (up to isomorphism and permutation of
inputs), and (3) all have constant bounded fan-out. XOR,, satisfies all three of these conditions.
When — gates count towards circuit size, optimal XOR,, circuits are binary trees of n — 1 subcircuits
computing (—)XOR: (Kombarov, 2011). We extend this characterization when — gates do not
contribute the circuit size. Thus, the XOR-Simple Extension Problem is in polynomial time under
both measures of circuit complexity.

We conclude by discussing conjectures about the complexity of the f-Simple Extension problem
for each explicit function f with general circuit lower bounds over the DeMorgan basis. Examining the
conditions under which our Simple Extension Solver is efficient, we argue that multiplexer functions
(MUX) are the most promising candidate for ETH-hardness of a Simple Extension Problem, towards
proving ETH-hardness of total MCSP.

2012 ACM Subject Classification Theory of computation — Circuit complexity; Theory of compu-
tation — Fixed parameter tractability

Keywords and phrases Minimum Circuit Size Problem, Circuit Lower Bounds, Exponential Time

Hypothesis

mailto:mlc@ibm.com
https://orcid.org/0009-0007-1118-1352
mailto:ndang@bu.edu
mailto:tjackman@bu.edu
https://orcid.org/0000-0002-2293-5670

35

36

37

38

39

40

41

2

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Simple Circuit Extensions for XOR in PTIME

1 Introduction

Circuits model the computation of Boolean functions on fixed input lengths by acyclic wires
between atomic processing units — logical “gates.” To measure the circuit complexity of
a function f, we first fix a set of gates B — called a basis. This work studies circuits over
the following basis: fan-in 2 AND, fan-in 2 OR, and fan-in 1 NOT gates. We consider two
complexity size measures pp and pg, which count only the binary gates and the total number
of gates in a circuit respectively. We will refer to B equipped with these two complexity
measures as D, the DeMorgan basis, and R, the Red’kin basis respectively!.

Basic questions about these models have been open for decades; we cannot even rule
out the possibility that every problem in NP is decided by a sequence of linear-size circuits
(see page 564 of [22]). Despite this, the ongoing search for circuit complexity lower bounds
has fostered rich and surprising connections between cryptography, learning theory, and
algorithm design [16, 12, 37, 6, 36, 17]. The Minimum Circuit Size Problem (MCSP, [23])
appears in all of these areas, asking:

Given an n-input Boolean function f as a 2"-bit truth table, what is the minimum s
such that a circuit of size s computes f ?

The existential question — do functions that require “many” gates exist? — was solved
in 1949: Shannon proved that almost all Boolean functions require circuits of near-trivial®
size Q(%) by a simple counting argument [40]. The current best answer to the explicit
question in the DeMorgan basis — is such a hard function in NP? — is a circuit lower bound
of 5n — o(n), proved via gate elimination [21]. This is far from the popular conjecture that
NP-complete problems require super-polynomial circuit size.

The algorithmic question — is MCSP NP-hard? — remains open after nearly fifty years
[41], even under strong complexity assumptions such as the Exponential Time Hypothesis
(ETH). But, many natural variants of MCSP have been proven NP-hard unconditionally.
For instance, DNF-MCSP [31], MCSP for OR-AND-MOD Circuits [15], and MCSP for multi-
output functions [20] are now known to be NP-hard. Furthermore, MCSP for partial functions
(MCSP™) [18] is hard under the Exponential Time Hypothesis (ETH), later extended to
unconditional NP-hardness under randomized reductions [14].

Our work studies the feasibility of generalizing Ilango’s technique for ETH-hardness of
MCSP* to total MCSP. In particular, underlying Ilango’s proof is a related decision problem
about circuit complexity of Boolean simple extensions which we call the f-Simple Extension
Problem (f-SEP).

» Definition (Simple Extension). Let f be a Boolean function that depends on all of its n
variables. A simple extension of f is either f itself or a function g on n 4+ m wvariables
satisfying:

1. g depends on all of its inputs.

2. CC(g) — the circuit-size complexity of g — is CC(f) + m.

3. There exists a setting k € {0,1}™, a key, such that for all x € {0,1}", g(z, k) = f(x).
We define the f-Simple Extension decision problem for total functions below.?

1 We will specify a basis if a statement pertains to only that basis. If the basis is not specified, then the
statement applies to both D and R.

2 From using a lookup table.

3 For partial function f-Simple Extension (f-SEP*), g is a partial function and we must determine whether
any completion of g is a simple extension of f.

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

M. Carmosino, N. Dang, and T. Jackman

» Problem (The f-Simple Extension Problem). Let f be a sequence of Boolean functions
{fn}nen such that each f, depends on all of its n inputs. The f-Simple Extension Problem
is defined as follows: Given n € N and tt(g)—the truth table of a binary function g—decide
whether g is a simple extension of fn.

For a fixed f whose truth table can be efficiently computed and whose exact circuit
complexity is known, f-SEP reduces to a single call to an MCSP oracle, because checking
whether ¢ is a non-degenerate extension of f can be done in polynomial time via brute force
(given the truth table of g). This observation gives rise to an MCSP-hardness proof framework:
if one can identify an explicit function f for which deciding the f-Simple Extension Problem
is hard, then MCSP is also hard.

This framework was implicitly used in Ilango’s hardness proof for MCSP* [18], i.e. reducing
an ETH-hard problem to deciding whether a partial function is a simple extension of f = OR.
We make this observation explicit in Section 2. Now, a natural question arises: can one
extend this idea to total MCSP and prove MCSP ¢ P assuming ETH? Ilango suggested that

“the most promising approach is to skip MCSP* entirely and extend our techniques to
apply to MCSP directly.” - Rahul Ilango, STAM J. of Computing, 2022

However, optimal circuits for OR are so well-structured that deciding whether a total
function is a simple extension of it is actually easy (see the discussion in Section 1.2.2 in
[18]). Minimal OR circuits are read-once formulas: each of the input is read exactly once and
each internal gate has fan-out 1. Simple extensions of it will also be computed by read-once
formulas, and deciding whether a given Boolean function has a read-once formula is easy
[2, 13]. Therefore,

“the missing component in extending our results to MCSP is finding some function f
whose optimal circuits we can characterize but are also sufficiently compler.” - Rahul
Tlango, STAM J. of Computing, 2022

Could simply replacing OR with some read-many f — perhaps XOR, which enjoys tight
bounds and a full characterization — allow Ilango’s technique to prove MCSP is ETH-hard?
For XOR, we show the answer is a resounding no. For other potential functions, the answer
is more ambiguous. We will discuss prospects for alternative hard functions in Section 1.3.

1.1 Our Results and Contributions

We narrow the field of candidate functions for such a hardness proof by developing a fixed-
parameter tractable algorithm for the f-Simple Extension problem (Section D.4). Such an
algorithm is surprising, because f-Simple Extension is a meta-complexity problem about
general circuits and our algorithm works in regimes where we know explicit circuit lower
bounds. Often, the combinatorial facts used in lower bounds imply a hardness result for
the appropriately-restricted meta-complexity problem (e.g., DNF-MCSP)! Nonetheless, we
obtain:

» Main Result. The f-Simple Ezxtension Problem is in P whenever

1. CC(f) — the circuit-size complezity of f — is linear,

2. the maximum fan-out over all optimal circuits for f is constant, and

3. the optimal*circuits for f, up to isomorphism and permutation of its n inputs, are
efficiently enumerable and polynomial few with respect to the length of its truth table: 2™.

4 In D, we require a circuit to be normalized for it to be optimal. In particular, it cannot contain any
double-negations. This prevents every function from having an infinite number of optimal circuits.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

Simple Circuit Extensions for XOR in PTIME

To apply our main result and discount a particular f, we require an exact specification of
its optimal circuits. The next natural candidate — XOR, a simple function whose circuits
are neither read-once nor monotone — has been well studied. Beyond enjoying exact size
bounds [39, 35], XOR is one of the few functions whose structure has been studied; it is
known that, in R, all optimal XOR,, circuits are binary trees of n — 1 XORy sub-blocks [25].
We extend this structural analysis to D in Section E, obtaining

» Main Lemma ([25], Theorem 37). Optimal XOR,, circuits consist of (n — 1) (—)XORq
sub-circuits.

FEach XOR,, circuit can therefore be characterized using binary trees with n leaves, of
which there are C,,_; = O(2"), where C,, is the n'" Catalan number [42]. As there are a
finite number of optimal normalized (—)XORg circuits, combining this characterization and
our main result to immediately yields

» Main Corollary. The XOR-Simple Extension Problem is in P.

Applying Ilango’s technique successfully will itself require a deeper study of circuit
minimization. This is not merely because any hardness proof needs to bypass our algorithm;
knowledge of circuit lower-bounds and optimal constructions for the base function is intrinsic
to the reduction itself. We make this connection explicit in Section 2, identifying that

» Main Observation. f-SEP* is ETH-hard under Levin reductions.

Lastly, in Section 1.3, we inspect each explicit function f that enjoys DeMorgan circuit
lower bounds and argue how plausible it is that the optimal set of f circuits avoids our Main
Result — a roadmap towards ETH-hardness of total MCSP via f-SEP.

1.2 Related Work

(Non-)hardness of MCSP Variants. Hirahara showed that Partial MCSP is unconditionally
NP-hard under randomized reductions [14]. Extending his breakthrough result is another
approach towards hardness of total MCSP. Though promising, this also faces challenges: under
believable cryptographic conjectures (indistinguishability obfuscation and subexponentially-
secure one-way functions), GapMCSP is not NP-complete under randomized Levin-reductions
[32]. Such reductions appear to suffice for Hirahara’s proofs, so one may need new ideas to
obtain NP-hardness of total MCSP via his approach.

We bypass the issue by working towards hardness of total MCSP under ETH — a stronger
assumption than P # NP. Even so, ETH-hardness of total MCSP remains a major open
problem, and there are no known barriers to extending Ilango’s approach in this setting. The
reader can decide for themselves if our algorithm constitutes such a barrier or not.

Optimal Circuit Structures. Knowing the lower-bounds of some explicit Boolean functions
f, a natural question to ask is: What about the structure of every optimal circuit computing
f ¢ For some functions and bases, this is easy to answer: minimal Red’kin circuits for OR,, are
binary trees of V gates. For even slightly more complex functions, structural characterization
seems to require intricate and exhaustive case analysis. Some of the earliest work on this
question include [38] and [5] which investigated when optimal circuits for certain 2-output
Boolean functions must compute each output independently. More recently, Kombarov
extended the characterization of XOR circuits to other complete bases when NOT-gates are
counted [26].

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

M. Carmosino, N. Dang, and T. Jackman

1.3 Discussion and Future Directions

A Remark on Bases. Both R and D are compatible with Ilango’s proof of ETH-hardness
of MCSP*. That proof relied on functions whose optimal {A,V, —=}-circuits are read-once
monotone formulas. There it was irrelevant whether — gates contribute to size: those circuits
simply did not contain negations. However, when we move to more complex functions like
XOR, negations must appear in the optimal circuits and as such, we must decide how to
treat them.

In the search for non-linear circuit lower bounds, the choice between pgr and pp is largely
irrelevant: the two complexity measures the same up to a small constant factor. However, as
we discuss in Section 2, Ilango’s technique requires knowledge of the structure of optimal
circuits. In this setting, there is not necessarily as strong connection between the two bases.
By extending Kombarov’s characterization of XOR circuits in R to D in Section E, we show
for that particular function, optimal circuits are structurally similar in both bases. But, for
other functions, this may well not be the case. It seems likely that negations could enable
a function’s optimal circuits to greatly vary under the two complexity measures. Indeed,
negations can greatly increase a problems complexity: [4] showed that a Boolean function
learning problem became difficult only once the number of — gates exceeded a small threshold.

By considering both bases in this work, we limit how negations impact the complexity of
f-SEP. We show that they do not greatly increase the complexity of the simple extensions
themselves: in Section C, we find that simple extensions under both complexity measures
are highly structured. If a future hardness reduction relies on negations, their role will be in
increasing the structural complexity of the underlying base function, either by increasing the
number of distinct optimal circuits, or by enabling non-constant fan-out in a base circuit.

A Roadmap for ETH-Hardness Proofs via Simple Extensions To prove f-SEP is ETH-hard
we will need a Boolean function whose optimal circuits are more complex and/or varied
than XOR. Specifically, these circuits must either (1) be superlinear in size, (2) require
non-constant fanout, or (3) be sufficiently numerous. Superlinear bounds seem beyond
current techniques—the most fruitful of which, gate elimination, seems unlikely to be able to
prove lower bounds above even 11n for wide classes of functions [11]. As such, it seems more
sensible to identify Boolean functions which violate the latter conditions. However, structural
characterization of the optimal circuits is also hard, and seems to require very tight circuit
bounds. Indeed, our DeMorgan basis characterization of XOR repeatedly exploited Schnorr’s
exact 3(n — 1) bound for XOR,, [39]. Regardless, this greatly narrows the prospective class of
functions from the original specification: “more complex than read-once formulas.” However,
the known explicit functions with tight DeMorgan bounds that may violate these conditions
are few and far between. In Table 1°, we summarize these explicit functions and assess how
suitable they are for ETH-hardness of f-Simple Extension Problem.

Observe that every function besides XOR in the table has a (small) gap between the
circuit lower and upper bound, and the “Q(1) Fanout” column ends with a question mark
(7). This is because XOR is the only listed function for which we know the ezact circuit
complexity and an optimal circuit characterization. The other “Q2(1) Fanout” entries above
are extrapolated by assuming that their respective DeMorgan upper bound constructions

5 Some of listed bounds are in Us, the basis consisting of every binary Boolean function besides XOR2
and -XOR2. For non-degenerate functions besides f(z) = -z, Uz and D are equivalent in terms of size.
The multiplexer lower bound of [33] is for the B2, the basis of all binary Boolean functions, but it also
serves as the best known lower bound in D.

202

203

204

205

206

207

208

209

210

212

213

214

215

216

217

218

219

220

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Simple Circuit Extensions for XOR in PTIME

Table 1 Explicit Functions with Circuit Lower Bounds in the DeMorgan Basis

Function(s) Lower Bound Upper Bound Q(1) Fanout Source(s)
XOR 3(n—1) = 3(n—1) NO [39]
Sum Mod 4 4n — O(1) 5n — O(1) NO? [44]
Sum Mod 2F 4n — O(1) ™ — o(n) NO? [44]
Multiplexer 2(n—1) 2n + O(y/n) YES? [34, 24]
Well-Mixed 5n — o(n) poly MAYBE? [27, 21]
Weighted Sum of Parities 5n — o(n) 5n + o(n) YES? [1]

are optimal. For instance, Zwick conjectured that optimal circuits computing the Sum Mod
4 (MODy) function are “shaped like” ternary full-adder blocks [44]. If this conjecture is
true, then MODy4-Simple Extension can be solved in poly-time since such circuits satisfy
the properties of our Main Lemma. Since the MODyx functions are computed similarly, we
conjecture that exactly characterizing the optimal circuits for Zwick’s functions would yield
efficient Simple Extension Solvers — not a proof of ETH-hardness for total MCSP.

However, we do have linear lower bounds for functions whose best known constructions
have non-constant fanout: the multiplexing function (MUX) contains sub-circuits which are
reused a logarithmic number of times [24]. In contrast to XOR however, the bounds for MUX
are not tight. The best lower bound is 2(n — 1), given by Paul [33].

Future Directions. The most obvious next step is to either (1) obtain total characterization
of the Multiplexer or (2) extend our Simple Extension Solver to handle circuits with super-
constant fanout. Neither of these tasks seems easy, but also they have not been subject to
intensive research the way that super-linear circuit lower bounds and hardness of MCSP
have. We hope that connecting these kinds of results to ETH-hardness of MCSP provides
new perspective and motivation.

Ilango’s MCSP”* result has also formed the basis for several hardness results in other
models of computation such as formulas and branching programs [19, 9, 10]; could one show
that the simple extension problem for formulas or branching programs is hard? These other
models of computations may prove easier to work with than unrestricted circuits. They also
enjoy superlinear lower bounds thereby bypassing our algorithm. Investigating the simple
extension problem in these settings would provide insight into the feasibility of the approach
in the circuit setting.

We conclude this section with a discussion of the simple extension problem in general.
Despite having only been studied as a tool for proving hardness of MCSP thus far, it may be of
independent interest. For example, while hardness of time-bounded Kolmogorov complexity
is tightly connected to the existence of one-way functions, hardness of MCSP has much weaker
quantitative connections [28, 36]. The f-Simple Extension Problem is more “structured”
than MCSP and easily reduces to it, so hardness assumptions about f-Simple Extension
Problem are stronger. Could such assumptions imply one-way functions?

1.4 Proof Techniques
1.4.1 The Structure of Optimal XOR Circuits

Similar to [25], we show that every optimal (—)XOR,, circuit over the DeMorgan basis
partitions into trees of (n — 1) sub-circuits computing (—)XORs — even when NOT gates are
free. The structure of optimal circuits computing the XOR-function is a crucial ingredient for

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

M. Carmosino, N. Dang, and T. Jackman

T T T s s s s s N v DeMorgan & Red’kin Bases

%

Figure 1 An example of the binary tree structure of optimal circuits computing XORs. The
left sub-figure depicts possible (—)XORz blocks in the Red’kin and DeMorgan Bases. Notice each
optimal Red’kin circuit is an optimal DeMorgan circuit, but not vice-versa. The right sub-figure
depicts that the arrangement of XOR2 blocks that make up XORg circuits are shared by both bases.

ruling it out as a candidate function. We carry out an elementary but intricate case analysis
of restricting and eliminating gates from optimal XOR circuits. Essentially we extract more
information from the proof of Schnorr’s lower bound by using it to identify “templates”
that must be found in any optimal XOR circuit. We push this process to the limit, fully
characterizing the “shape” of all such circuits. Specifically,

Schnorr’s proof is essentially a technical lemma which says that any one-bit restriction will
eliminate at least 3 costly gates [39]. This means that at the bottom level of every optimal
XOR circuit, any variable must be fed into two distinct costly gates, and furthermore, one
of these two must be fed into another costly gate. Any deviation from these properties will
violate essential properties of the XOR-function, such as “XOR depends on all the input
bits.” Via a basic inductive argument and the fact that XOR is downward self-reducible,
Schnorr’s lower bound follows: CC(XOR,,) > 3(n — 1).

Schnorr’s proof leaves the local structure of the optimal circuit computing XOR “open.”
Namely, it does not provide any information about the other inputs of the costly gates
or where their outputs connect to the rest of the circuit, since we consider fan-in 2 and
unbounded fan-out. However, we know that XOR circuit has a matching upper-bound of
3(n —1). In particular, this means each one-bit restriction cannot remove more than 3
gates. We also know that each variable in optimal XOR-circuits must be read twice.

We leverage these two properties to show that in every optimal XOR circuit, any two
distinct input variables x; and x; must be fed into a block B as shown in the left sub-figure
of Figure 1. Specifically, we argue that any deviations from the block will violate at
least one of the properties via exhaustive case analyses of gate elimination steps. Finally,
we argue that this block B must compute either XORy or =XOR, and apply a basic
inductive argument to obtain the desired structural characterization of any optimal circuit
computing XOR,, as depicted in the right sub-figure of Figure 1.

Besides the linear size for optimal circuits computing XOR, our structural theorem yields two
more properties that rule out XOR as a candidate function for MCSP-hardness via Simple
Extension. That is, for optimal circuits computing XOR,,, (1) the mazimum fan-out is a
constant, and (2) the number of such optimal circuits up to permutation of variables, is 20(n),

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

Simple Circuit Extensions for XOR in PTIME

Algorithm 1 Informal Simple Extension Solver, taking input n € N, g € Frq1m

1: if there is no key to f in g or g is degenerate then

2: return False
3: > If the above tests pass, then ¢ is a non-degenerate extension of f. It remains to check
simplicity.

4: for each isomorphism class C of open optimal circuits for f do

5: F + an arbitrary element of C with all gates labelled in topological order

6: label the open nodes of F' by an arbitrary permutation of x1,...,x,

7 for each reverse elimination F that adds exactly m costly gates to F' do

8: G + Decode(F, F)

9: if tt(G) ~ tt(g) then > Test using the procedure of Theorem 26.
10: return True

11: return False

1.4.2 A Fixed-Parameter Tractable Simple Extension Solver

It is easy to see that the approach of solving the Simple Extension Problem for XOR,, via
brute-forcing over all possible circuits of size CC(f) + m is super-polynomial in terms of
the length of the input truth-tables. Using the following ingredients, we design Algorithm
1 below, a Fixed-Parameter Tractable (FPT) algorithm for the Simple Extension problem
that depends on the following three parameters: (1) the number of optimal circuits for f (up
to isomorphism & permutation of variables), (2) the maximum fanout of any node in any
optimal circuit for f, and (3) CC(f).

Structured Simple Extension Circuits. By analyzing the behavior of optimal simple ex-
tension circuits under gate elimination, we are able to characterize the structure of every
optimal circuit computing a simple extension. By definition, if g is a simple extension of
f then there are restrictions of g’s added variables (called extension variables and denoted
y;) that yield f. We call such a restriction a key to f in g. We first show that circuits
obtained by partially restricting with a key are themselves optimal simple extension circuits for
intermediate extensions. Building on this, we then develop convenient all-stops restrictions
that order substitutions and simplification steps with the following properties: (1) single-bit
substitutions from this key in the given order eliminate exactly one costly gate at each step, (2)
there exists such an all-stops restriction for any optimal circuit computing a simple extension
(Lemma 17).

Combining these tools, we inductively show a robust structure arises in optimal simple
extension circuits: each extension variable occurs in an isolated read-once subformula that
depends only on other extension variables (referred to to as the Y-trees). Formally,

» Definition 1 (Y-Tree Decomposition). Let G be a circuit with two distinguished sets of
inputs: base variables X and extension variables Y. A Y-Tree Decomposition of G is a set
of triples (v,b,T) where y—referred to as a combiner—is a costly gate of G, bit b € {0, 1}
designates an input of v, and T is a sub-circuit of G rooted at the b child of v such that

1. Each T is a read-once formula in only extension variables Y .

2. Each y; € Y appears in at most one T.

3. Each T is isolated in G — gate 7y is the unique gate reading from T, and it only reads
the root of T'.

4. The sub-circuit of G rooted at the —b child of v contains at least one X wvariable.

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

M. Carmosino, N. Dang, and T. Jackman

Cy

3

|_| Inputs(T},) =
1=1
{yla Ya, ... 7ym}

Figure 2 An example of a Y-Tree Decomposition of size three.

The size of a decomposition is the number of tuples — Y -trees and their associated
combiner gates — present in the decomposition. The weight of a Y -tree decomposition is the
number of extension variables that are read in some T. We say a Y -tree decomposition is total
if its weight is |Y|, i.e. every extension variable appears. An example Y-tree decomposition
of size three is depicted in Figure 2, where the shaded circles represent the circuity around
each combiner v connecting each Ty to the rest of the circuit.

When gate elimination is performed with a total key, these added Y-trees and their
combiners are pruned to reveal an embedded optimal circuit for the base f function. We get
the following structural insight: every optimal simple extension circuit has a total Y -tree
decomposition. This decomposition forms the basis of our strategy: we brute force over every
optimal base circuit and try to “splice in” every possible Y -tree.

Encoding & Decoding the “Grafts” in a Y-Tree Decomposition. To ensure we can
efficiently construct these candidate simple extension circuits, we devise an encoding scheme
and corresponding decoding algorithm which efficiently captures the difference in local
neighborhoods after each new Y-tree is spliced on top of an existing gate or input. Our final
encoding must be O(n 4+ m) bits long to ensure brute-force runs in 20(n+m) We present our
encoding as a communication problem to clarify the overhead and constraints involved.

Suppose g is a simple extension of f and Alice knows G, an optimal circuit for g. Alice
can obtain an optimal circuit F' computing f by simply restricting the y-variables of G with
a key and performing gate elimination. Now consider the following communication problem:
Bob (i.e., line 5 of Algorithm 1) knows F, and Alice would like to send him G using as
few bits as possible. Because ¢ is a simple extension of f, Alice can compute the Y-tree
decomposition of optimal circuit G. The idea is to send Bob a sequence of instructions that
tell him exactly how to graft each Y-Tree of G onto the gates of F, where all information is
encoded relative to isomorphism-invariant properties of F.

Speeding Up Via Truth-table Isomorphism. Brute-forcing over the total encodings de-
scribed above is still incredibly inefficient. Since each Y-tree is a read-once formula in the
added m variables there are least C,,—1 - m! such explicit Y-trees, where Cy, is the a** Catalan
number [42]. The dominating term—m!—comes from permuting the labels of the variables.
The same issue arises if our base function f is symmetric: the number of optimal f circuits
is Q(n!).

We sidestep this issue and drastically improve the speed of brute-force search. If we
“incorrectly” assign variables in the base circuit or in the Y-trees, the result is a circuit for

10

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

352

353

354

355

356

357

358

359

Simple Circuit Extensions for XOR in PTIME

a Boolean function that is truth-table isomorphic to g, i.e. their truth-tables are the same
up to a permutation of the inputs. If h and g are truth-table isomorphic then they have
the same circuit complexity. Thus it suffices to brute-force over unlabeled (“open”) base
circuits and Y-trees, assign variables to inputs arbitrarily, generate each circuit’s truth table,
and check if it is truth-table isomorphic to g. This final step is feasible since truth-table
isomorphism testing can be done in polynomial time [30].

This results in our final algorithm, which runs in time O(|L| - 20¢(s*™)) where |L| is the
number of optimal base f circuits up to permutation of variables, ¢ is the maximum fanout
in any of those base circuits, and s = CC(f). As discussed above, for XOR these parameters
are all sufficiently small and hence XOR-Simple Extension is in P.

1.4.3 Paper Outline

The paper is laid out as follows. Section 2 explores the implicit reduction present to f-SEP in
the ETH-hardness proof for MCSP* in [18]. This discussion yields our Main Observation and
motivates our study of f-SEP and circuit structures. It, in conjunction with this introduction,
constitutes an extended abstract of our paper.

Appendix A and Appendix B formally define circuits and gate elimination respectively.
In Appendix C, we establish that every optimal circuit computing simple extensions are
highly structured: they can be decomposed into Y-trees. This observation forms the basis of
our Main Result, a fixed parameter tractable algorithm for f-SEP, in Appendix D. Finally,
in Appendix E, we extend Kombarov’s characterization of optimal XOR circuits in R to D,
in order to apply our Main Theorem to XOR-SEP.

The dependence between sections varies. For example, Appendix E is independent of the
f-SEP material like Section 2 and Appendix C. To aid the reader, we provide a reading order
in Figure 3.

Extended Abstract

Section 2.1 Section 2.2

Figure 3 The structure of our paper. Sections 1 and 2 form an extended abstract. An incoming
arrow indicates that the material depends on the previous section.

Appendix D

2 Revisiting ETH hardness for MCSP* via Simple Extensions

We re-examine the proof that MCSP* is ETH-hard from [18]. Our aim is to better understand
the reduction from 2n x 2n Bipartite Permutation Independent Set (BPIS) to the Partial f
Simple Extension problem (f-SEP™).

2.1 The f-Simple Extension Problem

We give formal definitions of simple extensions and its associated decision problem. We first
define non-degeneracy of a Boolean function.

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

M. Carmosino, N. Dang, and T. Jackman

» Definition 2. A function f € F,, the set of Boolean functions on n variables, depends
on its it wariable, x;, if there exists an input o € F,, such that f(a) # f(a @ e;), where e;
denotes the Boolean vector that is 0 everywhere except for a 1 at index i and & s bitwise XOR.
If f depends on all of its variables, then we say f is a non-degenerate function. Conversely,
we say f is a degenerate function if it does not depend on at least one variable.

We now define simple extension as

» Definition 3. Let f € F,, be non-degenerate. A simple extension of f is either f itself or
a function g € Fpym satisfying:

1. g is a non-degenerate function,

2. CC(g) =CC(f)+m, and

3. there exists a setting k € {0,1}™, called a key, such that for allx € {0,1}", g(x, k) = f(x).

We denote the first n inputs of f and g by x1, ...z, and will refer to the extra m inputs
of g as extension variables and refer to them as ¥, ..., 4. From the definition of simple
extension above, we define the following decision problem.

» Problem 1 (f-SEP). Let f be a sequence of Boolean functions {fn}nen such that each f,
is a non-degenerate function in F,. The f-Simple Extension Problem is defined as follows:
Given n € N and tt(g) —the truth tables of a binary function g € Fyrm—decide whether g is
a simple extension of f,.

We extend this to partial functions,

» Problem 2 (f-SEP*). Given n € N and a partial ¢t(g), decide whether any completion of
the truth table is a simple extension of fy.

2.2 An Explicit Reduction BPIS from to f-SEP*

Recall the formulation of BPIS from [18],

» Problem 3 (BPIS). The 2n x 2n Bipartite Permutation Independent Set is defined as
follows: Given G = (V, E) a directed graph with vertex set V = [n] x [n]. Decide whether
there exists a permutation 7 : [2n] — [2n] such that:

1. w([n]) =]

2. t({n+iien]})={n+i:ien]},

3. if ((5,k),(§', k")) € E, then either m(j) # k or w(j' +n) #k +n

If the Exponential Time Hypothesis holds, then BPIS cannot be solved much faster than
brute-forcing over all 2°("1°6™) permutations [29]. BPIS is a natural problem to show hardness
of circuit size problems since there are O(2°1°8%) circuits of size s. Reducing from BPIS
implies, assuming ETH, that our problem can not be solved much faster than by brute-forcing
over all possible circuits.

The reduction from BPIS to f-SEP*, as it appears as part of the original proof, is somewhat
implicit; the target problem, as written, could be described more simply as “determine whether
a partial truth table is ever consistent with a monotone read-once formula.” Since this is easy
for total functions [2, 13], this view of the reduction cannot help us to extend the reduction
technique to total MCSP. We will need the more general f-SEP and by reframing Ilango’s
proof we gain insight into how it might extend to total functions.

The connection to f-SEP™ is explicitly stated, however, in the introduction of [18]. Here,
the reduction is identified with ORy4,,-SEP* where each z variable is an extension variable.

11

12

402

403

404

405

406

407

408

409

410

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

Simple Circuit Extensions for XOR in PTIME

This is true, though non-degenerate functions computed by read-once formulas are simple
extensions of any of their non-degenerate restrictions. When framing the reduction to f-SEP*
explicitly, we find it more compelling to choose a different function f , whose truth table
is given by \/ie[gn] (yi A z;) — because using f makes the intuitive description of Ilango’s
technique “reverse gate elimination” an obvious property of the reduction. Under this framing,
the extension variables will instead be the x variables in Ilango’s original proof. Despite
this, fixing f to be ORy, is not arbitrary; afterwards, we discuss what insight it provides.
Informally, the two choices of base function provide distinct “channels” for ETH to imply
hardness of f-SEP*.

Structural Lemmas To encode BPIS in f-SEP*, we first prove two lemmas which were
essentially proven in tandem in [18] as Lemma 16. We separate them out here and stay faithful
to the original arguments. Like Lemma 16, these lemmas establish structural properties of
circuits computing our base function f and our eventual output g.

» Lemma 4. Let f : {0,1}2" x {0,1}>* — {0,1} be the Boolean function computed by
\/ie[Zn] (yi A zi). If 1 be an optimal normalized® formula computing f, then v, as a formula,
is equal 1o \/;c o, (Yi A 2i).

PN

In particular, the only difference between two distinct optimal circuits for f is which binary
tree of fanin 2 V gates is used.

Proof. Observe that ¢ must read all of its input variables and furthermore must do so
positively. This is because (1) f depends on all of its variables and is monotone in them, and
(2) 4 is normalized and thus no — gates can appear internally in the circuit. We note that 1)
must use a total of 4n — 1 gates since f is non-degenerate on 4n variables computable. We
see that v must contain at least 2n — 1 \V gates: substituting z = 12 and simplifying yields
a monotone read once formula computing ORs, (Y1, . - ., y2,) which must consist of 2n — 1 Vv
gates that appear in .

We now argue that each z; feeds into an A gate. Assume otherwise, then observe that
setting z; = 1 and simplifying removes at least two gates (since z; Vp =1V p=1). The
resulting read once formula for f |21 uses at most 4n — 3 gates. This is a contradiction
since f | ;1 still depends on all of its remaining 4n — 1 variables: it cannot be computed by
a circuit with fewer than 4n — 2 gates.

We now argue the other input to the A gate fed by z; is y;. Assume otherwise. Notice
that since v is read-once, setting z; <— 0 simplifying disconnects the other input to A gate
and thus removes dependence on any variables it depends on. However, f |2;o0 still depends
on all of its variables besides y;. Thus the A gate can only read y;.

Since each z; and y; feed a distinct A gate, there are at least 2n A gates. Since there are
4n — 1 total gates, and at least 2n — 1 V gates, we know that these A gates are the only A
gates that appear. Thus the remainder of the circuit is a binary tree of 2n — 1 V gates whose
2n leaves are the 2n A gates. |

Having established the structure of optimal circuits computing f we can further restrict
its simple extensions. Extra restrictions to the truth table enforce that extension variables
must be spliced into the circuit using 2n additional V gates that each read a different y;.

5 A formula is normalized if all negations are pushed down to the input level. Normalization does not
affect the size of the formula, and thus f-SEP™ still reduces to MCSP* even if we restrict ourself to
normalized formulas.

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

M. Carmosino, N. Dang, and T. Jackman

Table 2 BPIS requirements and the corresponding restrictions on §

BPIS Requirement on o Corresponding § Restriction Impact If 7 Violates
_ OR,(z1,...,%n) when If #(i) = 7 > n, then
o({L,.nh) ={1,...,n} z=1"0" and y = 0*" z;j + 0 removes z; in Cr
o({n+1,...,2n}) ORy(Zn+1,- - - T2n) when As above, Cr[, . will
J
={n+1,...,2n} z=0"1" and y = 0°" not depend on z;
If ((j, k), (5", k")) € E then Lif (z,y,2) = (erer, 07", eje;r)

Cr wrongly outputs 0

o(j) #koro(n+j) #o(n+k) | where 3((j, k), (', k) € E

This pairing of each y; with a different z; will define a permutation in which we can encode
BPIS solutions.

» Lemma 5. Let g : {0,1}2" x {0,1}2" x {0,1}2* — {0,1} be any simple extension of f
satisfying the following conditions:

A

f(y, 2) if x = 0%"

ORQn(zla N ZQn) Zf.’IJ = 12n
9(x,y,2) =) on

OR4n($17--~l‘2my17---Z/2n) ZfZZI

0 if z = 0%"

If ¢ is an optimal normalized formula computing g then there exists a permutation 7 : [2n] —
[2n] such that ¢ equals, as a formula, \/ ;i ((Zr@) V 4i) A 2i).

Proof. Since g(z,y,2) = f(y,z) when z = 02", we know that ¢ must read all y and z
variables positively. Similarly, all 2 variables must be read positively, since g(z,y,1?") =
OR4n (21, ... T2n,Y1, ... Y2n). Note that these restrictions also imply that ¢ contains exactly
4n — 1 V gates and 2n A gates since substituting and simplifying yields optimal formulas for
those restrictions. From the lemma above, we know know that when setting = = 0%" and
simplifying, we obtain a circuit structurally equivalent to \/ie[gn] (yi A z;). Therefore 2n Vv
gates must be removed during simplification. These V gates cannot feed any remaining V
above the A gates, since otherwise setting = 12" would fix the circuit to be 1, rather than
ORg,, (21, . . z2,). Similarly, z; cannot feed any of these V gates, as setting x = 12" would
remove dependence on that z; since the circuit is a read-once formula. Thus each V gate can
only depend on the x and y variables. Observe that each y; must feed into one of these V
gates instead of the A gate fed by z;, as otherwise when we set z = 12", the function would
still depend on y;. Since there are exactly 2n additional V gates, and exactly 2n y and 2n x
variables, its easy to see that each additional V gate must read one z; and one y;. Therefore,
as a formula, ¢ must be \/ie[zn]((xﬁ(i)vyi) A z;) for some permutation . <

An Explicit Reduction We now provide an explicit reduction from BPIS to f—SEP*. Given an
instance G of BPIS we output 4n and the partial truth-table for a function § that is consistent
with the requirements of Lemma 5. We add three additional restrictions (listed in Table 2) to
ensure that any permutation 7, whose corresponding circuit C; = \/ie[2n] ((xﬁ(i) Vo) A zl)
is consistent with §, is also a solution for G (and vice versa). All other rows of the truth table
are left undefined (e.g. as x). We summarize the requirements for any valid BPIS solution o,
the corresponding restriction, and how it enforces the requirement on 7 in Table 2.

13

14

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

502

503

504

505

506

507

Simple Circuit Extensions for XOR in PTIME

This completes the reduction as any o satisfying BPIS for G can be used to construct
a read-once circuit consistent with § and vice versa. The arguments verifying this are the
same as in [18], and we refer the reader there for the full details.

» Lemma 6. BPIS reduces to f-SEP* in 20 time.

The Original Framing In its introduction, [18] identifies § as a simple extension of ORyy,.
Under this lens, the hardness comes from determining which ORy,, base circuit can have the
z extension variables added. The additional truth-table restrictions on § force each z; to be
spliced in a particular way adjacent to y;. Assuming ETH, there are (n!) optimal base
ORy,, circuits that must be checked via brute-force.

Implicit Circuit Lower Bounds & Enumeration of Optimal Circuits From both presenta-
tions, we see that leveraging f-SEP involves explicit circuit size lower bounds. Indeed, both
Lemma 4 and Lemma 5 prove formula lower bounds for specific non-degenerate functions.
However, in a sense, circuit lower bounds are intrinsic to the reduction itself. This connection
can be made rigorous: the reduction can used to produce explicit Boolean functions which
enjoy non-vacuous lower bounds. On no instance of BPIS, the reduction outputs a partial
truth table where every completion is non-degenerate but not a simple extension. Hence, the
circuit complexity of these completions is not the vacuous 6n — 1 lower bound obtained by
knowing that functions produced are non-degenerate.

Furthermore, the reduction did not solely rely on the circuit complexity of f and §.
Lemmas 4 and 5 tightly control how base circuits and their extensions can be arranged;
and this is pivotal for encoding BPIS permutations. This structural requirement can be
formalized by observing the reduction is also an efficient Levin reduction.

Recall, from [32], that a Levin reduction is a many-one reduction that also efficiently
maps witnesses, not just problem instances. More precisely, let R be a set of ordered pairs
(z,w) where z is a yes-instance of a problem and w is an accompanying certificate. We define
Lg, the language defined by R, to be the set of elements x such that (z,w) € R for some w.
Then a Levin reduction between two languages A and B is an efficient many-one reduction r
between problem instances paired with two efficient mappings m, ¢ between instance-witness
pairs that satisfy (1) if (z,w) € Ra then (r(z), m(z,w)) € Rp and (2) (t(z),w) € Rp implies
(x,l(x,w)) € Ra.

For BPIS, the witnesses for an instance are simply the valid permutations o and witnesses
for f—SEP are optimal circuits computing the extension. Let Rppis and Rf—SEP* be the
sets of ordered pairs consisting of problem instances and all of their witnesses as described.
The reduction admits linear time mappings between witnesses: given o, simply construct
\/ie[%]((xg(i) V y;) A z;) and given a circuit for §, simply read off the permutation from the
x variables.

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

M. Carmosino, N. Dang, and T. Jackman

—— References

1

10

11

12

13

14

15

16

Kazuyuki Amano and Jun Tarui. A well-mixed function with circuit complexity 5n: Tightness
of the lachish-raz-type bounds. Theoretical computer science, 412(18):1646-1651, 2011.
Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning read-once formulas with
queries. J. ACM, 40(1):185-210, 1993. doi:10.1145/138027.138061.

Vikraman Arvind and Yadu Vasudev. Isomorphism testing of boolean functions computable
by constant-depth circuits. Inf. Comput., 239:3-12, 2014. URL: https://doi.org/10.1016/
j.1c.2014.08.003, doi:10.1016/J.IC.2014.08.003.

Eric Blais, Clément L Canonne, Igor C Oliveira, Rocco A Servedio, and Li-Yang Tan. Learning
circuits with few negations. arXiv preprint arXiv:1410.8420, 2014.

Norbert Blum and Martin Seysen. Characterization of all optimal networks for a si-
multaneous computation of AND and NOR. Acta Informatica, 21:171-181, 1984. doi:
10.1007/BF00289238.

Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit lower
bounds for mcsp from local pseudorandom generators. ACM Transactions on Computation
Theory (TOCT), 12(3):1-27, 2020.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

William Feller and Philip M Morse. An introduction to probability theory and its applications.
vol i, 1968.

Ludmila Glinskih and Artur Riazanov. MCSP is hard for read-once nondeterministic branching
programs. In Armando Castaneda and Francisco Rodriguez-Henriquez, editors, LATIN 2022:
Theoretical Informatics - 15th Latin American Symposium, Guanajuato, Mezxico, November
7-11, 2022, Proceedings, volume 13568 of Lecture Notes in Computer Science, pages 626—640.
Springer, 2022. doi:10.1007/978-3-031-20624-5_38.

Ludmila Glinskih and Artur Riazanov. Partial minimum branching program size problem is
eth-hard. Flectron. Colloquium Comput. Complex., TR24-117, 2024. (To Appear in ITCS
2025). URL: https://eccc.weizmann.ac.il/report/2024/117, arXiv:TR24-117.

Alexander Golovnev, Edward A. Hirsch, Alexander Knop, and Alexander S. Kulikov. On

the limits of gate elimination. J. Comput. Syst. Sci., 96:107-119, 2018. doi:10.1016/j.jcss.

2018.04.005.

Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina
Kolokolova, and Avishay Tal. Ac0 [p] lower bounds against mcsp via the coin problem.
In ICALP, 2019.

Martin Charles Golumbic, Aviad Mintz, and Udi Rotics. Factoring and recognition of read-
once functions using cographs and normality and the readability of functions associated with

partial k-trees. Discrete Applied Mathematics, 154(10):1465-1477, 2006. URL: https://www.
sciencedirect.com/science/article/pii/S0166218X06000072, doi:10.1016/j.dam.2005.

09.016.

Shuichi Hirahara. Np-hardness of learning programs and partial MCSP. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pages 968-979. IEEE, 2022. doi:10.1109/F0C354457.2022.00095.
Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. Np-hardness of minimum circuit
size problem for OR-AND-MOD circuits. In Rocco A. Servedio, editor, 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102
of LIPIcs, pages 5:1-5:31. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2018. URL:
https://doi.org/10.4230/LIPIcs.CCC.2018.5, doi:10.4230/LIPICS.CCC.2018.5.

Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of mcsp and its
variants. In 32nd Computational Complexity Conference (CCC 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

15

https://doi.org/10.1145/138027.138061
https://doi.org/10.1016/j.ic.2014.08.003
https://doi.org/10.1016/j.ic.2014.08.003
https://doi.org/10.1016/j.ic.2014.08.003
https://doi.org/10.1016/J.IC.2014.08.003
https://doi.org/10.1007/BF00289238
https://doi.org/10.1007/BF00289238
https://doi.org/10.1007/BF00289238
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/978-3-031-20624-5_38
https://eccc.weizmann.ac.il/report/2024/117
https://arxiv.org/abs/TR24-117
https://doi.org/10.1016/j.jcss.2018.04.005
https://doi.org/10.1016/j.jcss.2018.04.005
https://doi.org/10.1016/j.jcss.2018.04.005
https://www.sciencedirect.com/science/article/pii/S0166218X06000072
https://www.sciencedirect.com/science/article/pii/S0166218X06000072
https://www.sciencedirect.com/science/article/pii/S0166218X06000072
https://doi.org/10.1016/j.dam.2005.09.016
https://doi.org/10.1016/j.dam.2005.09.016
https://doi.org/10.1016/j.dam.2005.09.016
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.4230/LIPIcs.CCC.2018.5
https://doi.org/10.4230/LIPICS.CCC.2018.5

16

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

Simple Circuit Extensions for XOR in PTIME

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Yizhi Huang, Rahul Ilango, and Hanlin Ren. Np-hardness of approximating meta-complexity:
A cryptographic approach. Cryptology ePrint Archive, 2023.

Rahul Tlango. Constant depth formula and partial function versions of mcsp are hard. SIAM
Journal on Computing, 0(0):FOCS20-317-FOCS20-367, 2020. arXiv:https://doi.org/10.
1137/20M1383562, doi:10.1137/20M1383562.

Rahul Ilango. The minimum formula size problem is (ETH) hard. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February
7-10, 2022, pages 427-432. IEEE, 2021. doi:10.1109/F0CS52979.2021.00050.

Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. Np-hardness of circuit minimization
for multi-output functions. In Electronic Colloquium on Computational Complezity (ECCC),
volume 27, page 21, 2020.

Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n - o(n) for boolean circuits.
In Krzysztof Diks and Wojciech Rytter, editors, Mathematical Foundations of Computer
Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August 26-30,
2002, Proceedings, volume 2420 of Lecture Notes in Computer Science, pages 353-364. Springer,
2002. doi:10.1007/3-540-45687-2_29.

Stasys Jukna. Boolean Function Complezity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In F. Frances Yao and
Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 73-79. ACM, 2000.
doi:10.1145/335305.335314.

Klein and Paterson. Asymptotically optimal circuit for a storage access function. [EEE
Transactions on Computers, C-29(8):737-738, 1980. doi:10.1109/TC.1980.1675657.

Yu A Kombarov. The minimal circuits for linear boolean functions. Moscow University
Mathematics Bulletin, 66(6):260-263, 2011.

Yu A Kombarov. Complexity and structure of circuits for parity functions. Journal of
Mathematical Sciences, 233:95-99, 2018.

Oded Lachish and Ran Raz. Explicit lower bound of 4.5n - o(n) for boolena circuits. In
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC
’01, page 399-408, New York, NY, USA, 2001. Association for Computing Machinery. doi:
10.1145/380752.380832.

Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In Sandy
Trani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1243-1254. IEEE, 2020. doi:10.1109/
FOCS46700.2020.00118.

Daniel Lokshtanov, Déniel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. SIAM Journal on Computing, 47(3):675-702, 2018. arXiv:https://doi.org/10.
1137/16M1104834, doi:10.1137/16M1104834.

FEugene M Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In
Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages 652—658,
1999.

William J Masek. Some np-complete set covering problems. Unpublished manuscript, 1979.
Noam Mazor and Rafael Pass. Gap MCSP is not (levin) np-complete in obfustopia. In Rahul
Santhanam, editor, 39th Computational Complexity Conference, CCC 2024, July 22-25, 2024,
Ann Arbor, MI, USA, volume 300 of LIPIcs, pages 36:1-36:21. Schloss Dagstuhl - Leibniz-
Zentrum fir Informatik, 2024. URL: https://doi.org/10.4230/LIPIcs.CCC.2024.36, doi:
10.4230/LIPICS.CCC.2024.36.

Wolfgang J. Paul. A 2.5 n-lower bound on the combinational complexity of boolean functions.
In Proceedings of the Seventh Annual ACM Symposium on Theory of Computing, STOC
75, page 27-36, New York, NY, USA, 1975. Association for Computing Machinery. doi:
10.1145/800116.803750.

https://arxiv.org/abs/https://doi.org/10.1137/20M1383562
https://arxiv.org/abs/https://doi.org/10.1137/20M1383562
https://arxiv.org/abs/https://doi.org/10.1137/20M1383562
https://doi.org/10.1137/20M1383562
https://doi.org/10.1109/FOCS52979.2021.00050
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1145/335305.335314
https://doi.org/10.1109/TC.1980.1675657
https://doi.org/10.1145/380752.380832
https://doi.org/10.1145/380752.380832
https://doi.org/10.1145/380752.380832
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://arxiv.org/abs/https://doi.org/10.1137/16M1104834
https://arxiv.org/abs/https://doi.org/10.1137/16M1104834
https://arxiv.org/abs/https://doi.org/10.1137/16M1104834
https://doi.org/10.1137/16M1104834
https://doi.org/10.4230/LIPIcs.CCC.2024.36
https://doi.org/10.4230/LIPICS.CCC.2024.36
https://doi.org/10.4230/LIPICS.CCC.2024.36
https://doi.org/10.4230/LIPICS.CCC.2024.36
https://doi.org/10.1145/800116.803750
https://doi.org/10.1145/800116.803750
https://doi.org/10.1145/800116.803750

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

M

34

35

36

37

38

39

40

41

42

43
44

. Carmosino, N. Dang, and T. Jackman

Wolfgang J. Paul. A 2.5 n-lower bound on the combinational complexity of boolean functions.

SIAM J. Comput., 6(3):427-443, 1977. doi:10.1137/0206030.

NP Red’kin. Proof of minimality of circuits consisting of functional elements. Systems Theory
Research: Problemy Kibernetiki, pages 85-103, 1973.

Hanlin Ren and Rahul Santhanam. Hardness of kt characterizes parallel cryptography.
Cryptology ePrint Archive, 2021.

Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. LIPIcs, 151,
2020.

Jirgen Sattler. Netzwerke zur simultanen berechnung boolescher funktionen. In Peter Deussen,
editor, Theoretical Computer Science, 5th GI-Conference, Karlsruhe, Germany, March 23-25,
1981, Proceedings, volume 104 of Lecture Notes in Computer Science, pages 32—40. Springer,
1981. URL: https://doi.org/10.1007/BFb0017293, doi:10.1007/BFB0017293.

Claus-Peter Schnorr. Zwei lineare untere schranken fiir die komplexitét boolescher funktionen.

Computing, 13(2):155-171, 1974. doi:10.1007/BF02246615.
Claude. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28(1):59-98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x.

B. A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches) algorithms.

Annals of the History of Computing, 6(4):384-400, 1984. doi:10.1109/MAHC.1984.10036.

J. H. van Lint and R. M. Wilson. Recursions and generating functions, page 109-1311.
Cambridge University Press, 1992.

Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

Uri Zwick. A 4n lower bound on the combinational complexity of certain symmetric boolean
functions over the basis of unate dyadic boolean functions. SIAM Journal on Computing,
20(3):499-505, 1991.

17

https://doi.org/10.1137/0206030
https://doi.org/10.1007/BFb0017293
https://doi.org/10.1007/BFB0017293
https://doi.org/10.1007/BF02246615
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1109/MAHC.1984.10036

18

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

Simple Circuit Extensions for XOR in PTIME

A Circuits

In this section, we precisely define Boolean circuit complexity and accompanying notions
related to the “shapes” and “parts” of circuits. These definitions are straightforward, but
the details matter because we are working with general circuits and functions of linear size
complexity. We cannot, for example, afford to layer circuits or put them into negation normal
form (NNF, all NOT-gates on the inputs) because size-optimal circuits do not (in general)
obey these restrictions. In particular, optimal circuits for XOR are neither layered nor in
NNF (Theorem 37). We will require normal forms that are free to impose (Lemma 10).

Define general circuits over the basis B = {A,V,—,0,1} of Boolean functions: binary
A and V, unary — and zero-ary (constants) 1 and 0. Circuits take zero-ary variables in
X ={x1,22,...,2,} and Y = {y1, 92, . .. Ym } for some fixed n and m as inputs. Throughout
this work, we use the standard formulation of circuits consisting of single-sink and multi-
source DAGs where internal nodes, called gates, are labeled by function symbols, sources
are labeled by input variables, and edges as “wires” between the gates. We write V¢ and
FE¢ to denote the set of nodes and the set of edges of a circuit C' respectively, omitting
the subscript when it is clear which circuit is being referenced. Circuits compute Boolean
functions through substitution followed by evaluation.

An assignment p of input variables is a mapping from the set of inputs to {0,1}. To
substitute into a circuit according to an assignment p, each input z; is replaced by the
constant p(z;). For a circuit G' and assignment p we write G|, to denote the circuit obtained
by substituting into G according to p. To evaluate a circuit, the values of interior nodes
labeled by function symbols are computed in increasing topological order. Each gate’s value
is obtained by applying it’s function to the value of the node’s incoming wires. The output
of the circuit overall is the value of its sink.

Let F,, be the family of Boolean functions on n variables. We say a circuit G on n
variables computes g € F,, if for all a € {0,1}", G(a) = g(«). The size of a circuit G is
denoted |G| and C'C(g), the circuit complexity of a Boolean function g, is the minimum size
of any circuit computing g. We study two notions of circuit size, up and g, which count the
number of binary gates and the total number of gates respectively. We decorate any notation
with D or R (e.g. CC(G)P) to denote up and pur whenever necessary, but will omit if the
measure is clear from context or if a statement holds for both measures. We say a circuit G
computing ¢ is optimal if |G| = CC(g) and, in D, require that the circuit is normalized, i.e.
does not contain double-negations and every non-— node feeds at most one — gate.

We will often order the nodes of a circuit by depth, the maximum number of binary gates
on any path from the node to the output. We sort a circuits nodes in decreasing order by
depth, i.e. depth(u) > depth(v) implies u appears before v in our ordering, breaking ties
arbitrarily. Such orderings are efficiently realizable as depth is efficiently computable. To
ensure we correctly account just binary gates for the depth, we first assign the outgoing
edges of each binary gate and negation gate with weight —1 and 0 respectively. Then, we
simply take the circuit’s underlying DAG, reverse its edges, and compute the shortest path
from the output node to every other node in linear time [7].

We will sometimes work closely with specific parts of circuits. To this end we formally
define a subcircuit rooted at a vertex a.

» Definition 7 (Induced Subcircuit rooted at «). Let C = (V, E) be a circuit and let « € V.
Let P, = {b € V|3 a path from B to a}. The induced subcircuit rooted at o in C, denoted
Clal, is the vertez-induced subgraph of C' whose vertex set is P, and whose edge set consists
of the edges in Ec whose endpoints are nodes in P, .

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

M. Carmosino, N. Dang, and T. Jackman

Table 3 Gate elimination rules, categorized by their impact on fanout

Fixing Passing Resolving Pruning

OAy—0 1INy =7 yA—-y—=0 YAy =y
YyAO—=0 YAL — 7y YAy —0

1vy—1 OV~y—r~y yV-oy—1 YVy—=y
YV1I—=1 YVO0—y yVy—1

-0—1 -y = o
-1—=0

B Gate Elimination

Most of the proofs in this paper involve arguments by gate elimination: we take a circuit,
substitute a subset of inputs with constants, and then eliminate gates according to a set of
basic simplification rules. This is illustrated in Figure 4.

@ «
Figure 4 An example of applying the passing simplification 1 Ay — «. Notice that v inherits the
fanout from «, and « can then be garbage collected.

Towards algorithms for the f-Simple Extension Problem, we fix a concrete encoding of
these circuit-manipulation steps. Gates are identified by natural numbers. We have one
book-keeping manipulation: garabage collection deletes a gate « with no outgoing wires; i.e,
fanout(y) = 0. A garbage collection step is encoded by (Gc, v € N).

The main gate elimination rules are organized into four categories in Table 3, according
to how they impact fanout. All these rules (i) eliminate at least one logic gate and (ii) have
no effect on the function computed by a circuit C, because they are Boolean identities.

A gate elimination step is encoded by the tuple (GE, r € 17, b: N — 7) where r identifies
a rule and b is a “binding” that maps gates of C' to gates of the circuit pattern on the left
hand side of rule r. Each pattern is a well-formed Boolean formula and thus has a main
connective « in the standard sense. To apply a rule, examine the right hand side: if it is

a constant ¢ € {0,1}: delete all incoming wires to « and change the type of « to c.

a matched node (i.e., v): redirect all wires reading « to read from ~ instead.

Note that the identifier of @ never changes; only its type and incident wires. Depending
on the initial fanout of each gate involved in the pattern, applying a rule could totally
disconnect some gate(s) and leave the circuit in a state that needs garbage collection. We
introduce notation for applying sequences of these steps to circuits, and define composed
circuit manipulations that are “well behaved” with respect to specific circuits.

» Definition 8. A simplification is a sequence of gate elimination and garbage collection
steps. If X is a simplification and C' is a circuit, write A(C') to denote the new circuit obtained
by applying each step of \ to C in order. If a single step of A fails to apply in C, then fix
AC) = C so that invalid X for C are idempotent by convention. A simplification \ is called

19

20

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

732

733

734

735

736

737

738

739

740

742

743

744

Simple Circuit Extensions for XOR in PTIME

Table 4 Changes to fanout after each type of gate elimination step.

Fixing Passing Resolving Pruning

fo'(k) =fo(k) — 1 fo'(k) =fo(k) — 1 fo'(a') = fo(a) fo'(y) > fo(y) + fo(a) — 2
o/ (7) =fo(1) — 1 fo'(y) = fo(y) +fola) =1 fo'(7) =fo(x) ~1 fo'(a) =0

fo' (o) = fo(w) fo'(a) =0 fo'(m) =fo(=) —1 fo'(=) =fo(—) — 1

terminal for C if, for every X' that extends \ by one additional gate elimination or garbage
collection step, A(C) = X' (C), and/or
layered for C' if the depth of binary gates binding to o in each step is non-decreasing.

Simplifications formalize every sequence of circuit-manipulation steps except for sub-
stitution. They change the function computed by a circuit if and only if some input gate
is garbage-collected. Simplifications suffice to impose convenient structural properties on
arbitrary circuits.

Definition 9. A circuit C' is normalized or in normal form if

| 4

1. C is constant-free or C is a single constant,
2. every gate in C' has a path to the output, and
3

. no sub-circuit of C matches the left hand side of a gate elimination rule.

Any terminal simplification suffices to put a circuit C in normal form, and it straight-
forward to see that the number of constants in C' lower-bounds the number of eliminated
gates. We require more: every circuit C can be normalized by a layered simplification, and
the number of eliminated gates is lower-bounded by the cumulative fanout of constants in C'.

» Lemma 10. For any well-formed circuit C with q constants that have total fanout £, there is
a terminal and layered simplification A such that A(C) is a single constant or |\(C)| < |C|—<.

Proof. We update two potential functions as C' is simplified: ¢;, the cumulative fanout of
constants in C' and u¢, the number of binary gates eliminated after ¢ manipulations. Since
a circuit is normalized only when it is a single constant or ¢; = 0, it suffices to exhibit a
terminal layered simplification A such that u; > £ if ¢, = 0.

Sort the gates of C' by depth (breaking ties arbitrarily) to fix a total order on gates.
This ordering remains consistent throughout the entirety of simplification. Constructing A is
straightforward: apply gate elimination rules in depth-order (by «) from the input gates of
the circuit “up”, garbage collecting any disconnected gate(s) immediately afterwards so only
gates with a path to the output remain.

To update ¢;, we enumerate how fanout changes for the possible gates that may appear
in each rule: the main connective «, a matched node ~, a constant x, and a negation gate
—. Write fo(-) for the fanout of a gate before rule application, and fo’(+) for the fanout of
a gate afterwards. For example, in Figure 4, we have fo'(a’) = 0, fo'(k) = fo(k) — 1, and
fo'(y) = fo(v) + fo(a) — 1. We display the fanout-updates for each rule type in Table 4.

Because « has a path to the output, fo(a) > 1. Thus, each rule application reduces ¢; by
at most 1, even when v matches a constant (as in Figure 5). Any reduction in ¢; by 1 is
accompanied by a corresponding increase in ;. Furthermore, observe that any subsequent
garbage collection steps only increase p and never reduce the ¢. Any 5 that is garbage
collected cannot read a constant: § would be the main connective for a rule application lower
in the circuit than «. Hence if ¢; = 0, we must have u; > /.

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

M. Carmosino, N. Dang, and T. Jackman

Lastly, always choosing the depth-maximal o guarantees that our simplification is layered.

This follows from the fact that rule applications only introduce new opportunities for gate
elimination whose main connectives are shallower in the circuit. |

To finish capturing circuit manipulation, we encode a variable substitution step by the
tuple (SUB, v € {x,y}, i € N, c € {0,1}) where v identifies the target set of variables (base
a’s or extension y’s), i gives the variable number, and ¢ is the value to be substituted. Apply
a single substitution (SUB, v, i, ¢) and to the circuit C' by changing the type of every v;-gate
v to the given constant ¢ while leaving the identifier of each ~ intact, exactly as in the
application of a fixing rule.

Substitution always changes the function computed by C, restricting its domain to a
subcube. Additionally, C' remains well-formed after any substitution, because input gates
have fanin 0. However, C' is never in normal form immediately after a substitution because
it introduces a constant. So we generalize simplifications by allowing for substitution steps.

» Definition 11. A restriction is a sequence of substitution, gate elimination, and garbage
collection steps. Restrictions generalize simplifications, so we extend notation and conventions
accordingly: p(C) denotes the result of applying restriction p to circuit C, and invalid
restrictions for C are idempotent by convention.

The categories of terminal and layered simplifications apply immediately to restrictions,
because they explicitly reference only gate elimination or garbage collection steps. Thus,
restrictions are terminal and/or layered only with respect to how they simplify and not how
they substitute. When applying a restriction p to a Boolean function instead of a circuit, we
simply ignore the additional simplification steps (if any).

C Structural Properties of Optimal Simple Extension Circuits

In this section we characterize the structure of optimal simple extension circuits. The main
result is a Y -trees decomposition (Theorem 19), summarized below.

» Theorem (Informal). In any optimal circuit for a simple extension, extension variables
occur in isolated read-once formulas (Y-trees) that depend only on extension variables.

» Remark 12. From this point onward, we exclusively consider the DeMorgan basis D.
The same arguments show an identical decomposition theorem in R. In fact, R is simpler.
Negations cannot be involved in any of our restrictions with keys, since Lemma 10 removes
at least m binary gates from the circuit and no simplification steps introduce negations.
Therefore, the removal of any negations would surpass the budgeted additional m gates in
our complexity measure. Consequently, each Y-tree in an optimal R simple extension circuit

ofR OO NNGE
Figure 5 An application of a pruning rule where 7 itself is a constant. Since fo(a) > 1, we have
pre1 = + o' (@) —2=¢ +fo(a) —2> ¢ +1-2=¢¢ — 1.

is not only a read-once formula, it is also monotone.

21

22

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

812

813

814

815

816

817

818

819

820

821

822

823

824

Simple Circuit Extensions for XOR in PTIME

C.1 Restrictions With “Speed Limits” on Gate Elimination

First we construct restrictions that are guaranteed to eliminate the gates of an optimal
simple extension circuit as “slowly” as possible: exactly one costly logic gate is eliminated for
each substituted variable. Structural information is then obtained by “watching” these slow
restrictions operate. We begin by establishing basic properties of optimal simple extension
circuits. First, combining normalization with the requirement that simple extensions are
non-degenerate functions yields

» Corollary 13 (Extension Variables are Read-Once). In any optimal circuit for a simple
extension, the fanout of each extension variable is exactly one. Furthermore, if an extension
is megated, this negation has fanout exactly one.

If any extension variable has fanout greater than one, substituting a key and normalizing
(Lemma 10) would eliminate more than m gates. This leads to a contradiction: the resulting
circuit computing f would have size less than CC(f). Generalizing this observation, we
obtain a short list of feasibly-checkable properties that guarantee a given circuit is the optimal
circuit of a simple extension in Lemma 14.

Essentially, the existence of a circuit G computing g with size CC(f) + m that (1) is
not “trivially sub-optimal” and (2) not “trivially degenerate” witnesses that g is a Simple
Extension of f. This is not immediate; such a circuit does not necessarily guarantee non-
degeneracy of g and that CC(g) = CC(f) +m as G could admit non-trivial simplifications.
However, non-degeneracy of f implies that such straightforward witness circuits suffice.

» Lemma 14. Let f € F,, be non-degenerate and suppose g € Fpim is an arbitrary extension
of f. If there exists a normalized circuit G computing g such that

1. |G| =CC(f) +m,

2. G reads each base variable at least once, and

3. G reads each extension variable exactly once,

then g is a simple extension of f and G is an optimal circuit for g.

Proof. Let functions f, g and circuit G be as specified in the lemma. If g is non-degenerate
in all variables, then G must be an optimal circuit for ¢ — otherwise we could restrict G
with any key to f in g and contradict the circuit complexity of f. So in this case g is indeed
a simple extension of f, and G is optimal. Suppose now (towards contradiction) that g is
degenerate with respect to some set of extension variables D.

We proceed by reverse induction starting with base case |D| = 1. Let y; be the unique
degenerate variable. By definition of degeneracy, g|y,—o = g|y,=1. Thus, there are keys to f
in g with both y; = 1 and y; = 0. Therefore, we can substitute y; to eliminate > 1 costly
logic gate a of G with a fizing rule. The matched gate v loses a wire to «, so it may become
disconnected. Run garbage collection recursively starting at -y, until no more fanout-0 gates
exist in G, and call the resulting circuit G’.

Because y; is the only degenerate variable, no other input gates can be disconnected by
garbage collection after substituting into y; (though some logic gates may be eliminated). So
G’ is a well-formed circuit with constant fanout > 1 and size |G’| < |G| — 1. Furthermore,
G’ computes function ¢’, an (n + m — 1)-variable extension of f, because the keys to f in
¢ matching one setting of y; are preserved in ¢’. Now substitute the remaining (m — 1)
extension variables of G’ according to one of these keys to f in ¢’ and normalize (Lemma 10)
to obtain a circuit F* that either
1. has at most |G| — (m — 1) + 1 < CC(f) gates, or
2. computes a constant function.

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

M. Carmosino, N. Dang, and T. Jackman

Both cases yield a contradiction; either to the circuit complexity or non-degeneracy of f.
Now suppose |D| > 1. Because all y-variables in D are degenerate, there are keys for all
possible settings of them. So we reduce to the base case by substituting |D| — 1 extension
variables such that, for each variable, exactly one costly logic gate is eliminated by a passing
rule. Passing rules never disconnect the matched ~. This leaves a single degenerate y-variable
in the new function ¢”, an (n + m — |D| 4+ 1)-variable extension of f, computed by circuit
G" obtained by normalization. G” and g” are now exactly as specified in the statement of
this Lemma, except for the guarantee that ¢” has a unique degenerate extension variable.
Therefore the base case with |D| = 1 applies to G” and g¢”, concluding this proof. <

We will want to substitute key bits one by one to better analyze intermediate circuits.
This analysis lends itself to induction only if the intermediate circuits themselves are optimal
circuits for intermediate simple extensions. This motivates the following special class of
restrictions.

» Definition 15 (All-Stops Restrictions). Let C' denote an arbitrary circuit with n 4+ m input
variables. A restriction p that substitutes m variables is all-stops for C if, for each i € m,
there is a prefix p; of p such that p;(C) is an optimal circuit for a simple extension of the
function computed by p(C) on (n 4+ m — i) variables.

If a restriction is all-stops, then exactly one binary gate is eliminated per substitu-
tion. Since each extension variable (or its negation) is read by a single binary gate, it is
straightforward to analyze the simplifications that occur.

> Claim 16 (Simple Simplifications). Simplifications between substitutions in all-stops
restrictions are simple, i.e. after substitution, the following gate elimination rules are applied
in this exact order: a constant negation (if necessary), a passing rule, and lastly a double
negation (if necessary).

The sole binary gate cannot be eliminated via a fixing rule, as otherwise the circuit is
not constant free and must either become constant or we could eliminate more costly gates.
These highly-structured manipulations will help us build up a robust structure for optimal
simple extension circuits in the next subsection. However, we must first show that such
restrictions even exist. We surpass this goal: we construct one that is also layered.

» Lemma 17. Let f € F,, and suppose g € Fpim is a simple extension of f. For any
optimal circuit G computing g, there is an all-stops restriction p for G such that

1. p is terminal and layered, and

2. p(G) is an optimal circuit computing f.

Proof. Let Boolean functions f, g and circuit G be as in the Lemma. Sort the binary gates
of G by depth (breaking ties arbitrarily) to fix a total order on gates. This ordering remains
consistent throughout the entirety of our proof. Denote by K C {0,1}™ the set of all keys to
f in g. Normalize G to eliminate double negations — no other rules can apply because G is
optimal (Lemma 10). Record these initial steps in pg, which we then iteratively extend to
the desired all-stops restriction.

Take y;, read by the maximal in G. Such y; are well-defined because G reads all extension
variables exactly once (Lemma 14) and so each y; has a unique depth in G. Consider the
subcircuit around y;: denote by « the binary main connective that reads (—)y; and by v the
sibling of (—)y; (the “matched gate” in elimination rules). Now let K/ C K be the subset of
keys such that substituting y; according to any k& € K’ would eliminate o with a passing
rule.

23

24

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

Simple Circuit Extensions for XOR in PTIME

If K’ is non-empty, then substitute y; according to any key in K’ and normalize the
resulting circuit. Record these steps in a restriction p; that extends py. The resulting circuit
G’ = p1(G) is in normal form, reads each base variable exactly as many times as G did, and
reads each remaining extension variable exactly once. Therefore, the function computed by
G’ is a simple extension of f on (n+m — 1) variables, and G’ is an optimal circuit (Lemma
14). By construction, p; is layered and terminal, so we will continue extending p; by selecting
a depth-maximal extension variable in G’ and re-starting this case analysis.

If K’ is empty, consider cases depending on the type of 7. Suppose towards contradiction
that ~ is not an extension variable or the negation of an extension variable; in this case
there is no y; with a path to v because we selected a y; of maximal depth. Substitute y;
according to any key in K, and observe that we obtain a circuit with total constant-fanout
exactly fo(a) > 1 after applying a fixing rule. Then substitute all other extension variables
according to the same key: the resulting circuit G” has total constant-fanout fo(a) + m — 1.
Normalizing, we contradict either the circuit size or non-degeneracy of f (exactly as in the
proof of Lemma 16).

Therefore, if K’ is empty, we must have that v is (—)y,; for some j # i — a layer
tie between extension variables. Thus, a restriction will be layered regardless of which
substitution (into y; or y;) is made first. Using the particular structure of this sub-circuit
(i.e., “ (m)y; @ (m)y; 7 where « is the main binary connective) we construct a key that sets
y; to eliminate o with a passing rule while preserving the rest of K. The idea is to extract
information from G after y; is substituted according to any key in K. Such substitution
mutates the sub-circuit around y; in G. If we can identically mutate G after setting y; to
eliminate a by passing first, then we are done. The details of this construction follow.

Purely to inspect the results, substitute y; in G according to any key in K, and observe
that we obtain a circuit G’ with total constant fanout exactly fo(«) after applying a fixing
rule. Furthermore, the function computed by G’ is an (m — 1)-input extension of f where
o has been substituted with a particular constant value ¢; € {0,1} and the variable y; is
disconnected from the input (and thus degenerate). This constant ¢; is all the information
we need.

Returning to G, there must exist a substitution s; € {0,1} for y; that eliminates o via a
passing rule: this follows immediately by inspecting the truth tables of binary {A, V} and
case analysis on the occurrence of a negation gate between y; and a. Extend p by first
substituting s; for y; in G and normalize. The resulting circuit G” passes all wires reading
a to (—)y; and loses exactly one costly gate. Again by inspection, we can substitute y; with
some value s; € {0, 1} such that the wires reading (—)y; read the constant ¢; — identical to
the subcircuit in G’. Thus, G’ computes an (m — 1)-input extension g; of f witnessed by
the key {y; — s;}. Extend the working restriction p; by first {y; — s;} and then {y; — s;},
recording normalization steps in between and afterwards.

Finally, observe that G’ meets all the preconditions of Lemma 14 and so g; is a simple
extension of f and G’ is an optimal circuit computing g;. The proof concludes by iterating
this case analysis on the set of keys and depth-maximal extension variables until all extension
variables are eliminated. |

C.2 Y-tree Decomposition

Equipped with layered all-stops restrictions, we can now inductively prove that optimal
simple extension circuits have the following nice structure: each extension variable occurs
in an isolated read-once subformula called a Y-tree that depends only on other extension
variables, and the output of these read-once formulas is read by a single costly gate called a

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

M. Carmosino, N. Dang, and T. Jackman

combiner. Formally,

» Definition 18 (Y-Tree Decomposition). Let G be a circuit with two distinguished sets

of inputs: base variables X and extension variables Y. We say a triple (6,b,T), where

d—referred to as a combiner—is a binary gate in G, bit b € {0,1} designates an input of

0, and T is a sub-circuit of G rooted at the b child of 6, is admissible if the following local

conditions are met:

1. Each T is a read-once formula in only extension variables Y .

2. Each T is isolated in G — gate «y is the unique gate reading from T, and it only reads
the root of T'.

3. The sub-circuit of G rooted at the —b child of v contains at least one X wvariable.

A Y-Tree Decomposition of G is a set of admissible triples which are non-intersecting,
that is, each y; € Y appears in at most one T. The size of a decomposition is the number of
tuples present in the decomposition. The weight of a Y -tree decomposition is the number of
extension variables that are read in some T. We say a Y -tree decomposition is total if its
weight is |Y|, i.e. every extension variable appears.

We first remark that the binary gates spread across the read-once formulas and combiners
in a total decomposition account for all m binary gates eliminated when substituting and
simplifying with a key.

» Theorem 19. If G is a minimal circuit for a simple extension, then G has a total Y -tree
decomposition.

Proof. We proceed via induction over m, the number of extension variables. When m = 0,
the statement is vacuously true: the empty Y-tree decomposition is total for any optimal
circuit of the base function.

Assume the statement holds for any simple extension with & — 1 extra variables. Let Gy

be an optimal circuit for gi, some simple extension of a function f, with k extension variables.
By Lemma 17, there exists an all-stops layered restriction p such that p(Gy) is optimal for f.

By definition, there exists a prefix p; of p such that Gp_1 = p1(Gy) is an optimal circuit for

a simple extension of f with & — 1 extension variables. Without loss of generality, assume yj

is the variable substituted and eliminated by p;. By our inductive hypothesis, Gi_; admits

a total Y-tree decomposition, V1. We will show how to add to/modify Vi1 to obtain a

total Y-tree decomposition for Gy by carefully considering the steps of p1, .

By Corollary 16, p; is exactly the following sequence: a single substitution, (possibly) a
constant negation, a passing rule, and (possibly) a double negation elimination. Consider
this passing rule, and denote by « its the main connective, k its constant, and ~ its matched
node. Observe that (—)y, is k since, after substitution (and possibly constant negation), it
is the only constant in the circuit. Let ()8 be the matched node v, i.e. the other input
to a. We remark that p; only impacts the local neighborhoods of nodes adjacent to «; any
triples of V;_1 not involving these nodes are still admissible in Gi. We modify Vi_1 in the
following ways, depending on whether 3 is present in any triples.

Adding a Triple: If § is not present in any triple, we argue that the triple («,b, 7" = (=)y;),
where b denotes which input of « is (—)y;, can be added to V_1. It is easy to see this
triple is admissible: since p is layered, 5 can only depend on X variables, else there are
deeper nodes reading extension variables that must be eliminated first. However, we
must check that all triples of J;_; remain admissible in G§. The only nodes of Vx_1
possibly impacted from Gy to Gx_1 are combiners, since only those can read (—)8 in
Gr_1. However, these combiners still fulfill the third condition in Gj: the sub-circuit

25

26

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

Simple Circuit Extensions for XOR in PTIME

rooted at (=)« still depends contains X variables since (—)a reads (—)5. Hence all of
these triples are admissible, and are non-intersecting—forming a total Y decomposition
for Gy,.

Modifying a Triple: It is not hard to see that the non-intersecting requirement enforces that

[appear in at most one triple. Furthermore, if 5 is present in some triple, then it must
be an extension variable: if it is an interior binary gate of some tree 7', then there are
deeper binary gates than a that read extension variables which are eliminated later in
the layered p. When g is present in some triple of Vi_1, we will need to modify its tree
to include y, and «
Let t = (d;,b;,T;) be the triple from Yy_; that includes 8. Not only is ¢ inadmissible in
Gy, it is not even well-formed: wires reading nodes of T; in Gi_; are actually reading
(m)a in Gg. As the modifications to Gy by p; are local, every other triple in Vi1 remains
admissible in Gy. We simply need to incorporate (—)a and (=) into the triple, ensuring
the first two conditions are met. Observe that there is only one node reading (—)c,
as otherwise the fanout of (=) will have greater than one fanout in Gy_;, violating
Corollary 13. We modify t in two ways, depending on which gate in the triple is reading
it.

a disconnects §; from T;: If §; reads (—)«, then observe it, not the root of T;, is the
b; child of ¢;. However, the sub-circuit 7" rooted at (—)(«) is a read-once formula in
only extension variables. Replacing T; with 7" in t repairs the triple and produces a
total decomposition.

a disconnects 3 inside T;: If a node in 7; reads ()« in Gi, then T; is not actually a
well-formed sub-circuit of Gj. However, the sub-circuit T” rooted at the b; child of
d; is still read-once formula over extension variables, once we include (—)a and (—=)ys.
Hence (7;,b;,T") can replace t to produce a total decomposition Y.

<

D The f-Simple Extension Problem is Fixed-Parameter Tractable

In this section we build a polynomial time algorithm for the XOR-Simple Extension Problem.
By Lemma 14, it suffices to find a normalized circuit for g of size CC(f) + m which reads
every extension variable.

For exposition, recall the framing of encoding simple circuit extensions from Section 1.4.2:
suppose g is a simple extension of f and Alice knows G, an optimal circuit for g. Alice can
obtain an optimal circuit F' computing f by simply restricting the y-variables of G with a
key and performing gate elimination. Now consider the following communication problem:
Bob knows F', and Alice would like to send him G using as few bits as possible. Because g is
a simple extension of f, Alice can compute the Y-tree decomposition of optimal circuit G.
The idea is to send Bob a sequence of instructions that tell him exactly how to graft each
Y-Tree of G onto the gates of F.

D.1 Grafting Y-Trees: Key Ideas & Structural Properties

We begin by illustrating the “grafting” idea for the algorithm. First consider the case where
there is only a single Y-tree Ty in the decomposition of G. Then there must be some
costly gate n — an origin already present in F' — that is combined with Ty in G. Our
decomposition theorem shows that every possible arrangement of this graft is depicted in

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

M. Carmosino, N. Dang, and T. Jackman

(a) Before any extension variable restrictions (b) All extension variables restricted except y;

Figure 6 The local neighborhood of a combiner § and Y-tree Ty grafted on an origin 7.

Figure 7 The origin n after the Y-tree has been pruned.

Figure 6, which shows the local neighborhood” of the single Y-tree in G.

In Figure 6, both § and 7 represent costly gates that must be present, the dotted negations
represent NOT gates that may be present, and the cones represent connections to the rest
of G. The notation Rg(8) means “the set of costly gates that read gate 8 in circuit G.”
These sets are depicted by shaded cones, because at least one of them must be non-empty —
otherwise, G would not be an optimal circuit — but we do not know which. Note how the
Y-tree and potential negation atop it are isolated from the rest of the circuit, except for
connections via the combiner gate §. We will describe in some detail how this single graft
can be transmitted and sketch the issues involved in efficiently coding all grafts and Y-trees
for Bob.

First, Alice applies gate elimination to GG using a prefix of a terminal and layered all-stops
restriction (Lemma 17), eliminating all but one of the y-variables in T,. Because Ty is an
isolated formula in G, a single variable y; is left in G' at the end of this process: the local
neighborhood transforms from Figure 6a to Figure 6b. Crucially, all gates outside T3 are
unaffected. Now, Alice runs a final step of gate elimination, substituting y; according to the
key. The result will be as depicted in Figure 7: the local neighborhood of 1 in F'. The key
observation is that Bob has perfect knowledge of this structure — it is simply a sub-circuit
of F. If Alice can send (1) an identifier for n (2) a “diff” between the neighborhood of 7 in
F compared to G (Fig. 6b vs. 7) and (3) a description of Ty this would suffice for Bob to
efficiently transform F' into G.

The most straightforward protocol would send O(log(#gates(F'))) bits to identify n for
Bob. This is too expensive if there is more than one Y-tree in G. Recall that we can only

7 Think of this as “zooming in” to inspect one of the shaded circles in Figure 2.

27

28

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

Simple Circuit Extensions for XOR in PTIME

tolerate runtime of 2°("+™) and intend to brute-force all possible codes. There could be
as many as m Y-trees with a single variable each and thus m origins, so brute-forcing this
simple code would require time 200" 108(M)+n) for Lgates(F) = O(n) — super-polynomial in
2(n*+m) and therefore unacceptable.

Instead, Alice can send a #gates(F')-bit origin indicator vector x, where x; is 1 if gate ¢
of F is the origin of some Y-tree. It is feasible to brute-force these vectors in 29(")-time for
any possible number of origins given a linear upper bound on the circuit size of f. Returning
to the case where G has a single Y-tree, Bob identifies n7 by reading the single 1-bit of x. For
the local neighborhood of 7, the following information must be transmitted to summarize
the “diff” between F' and G:

1. The costly functions computed by gates n and 4,

2. presence or absence of each possible NOT gate depicted in Figure 6b,

3. whether 7 is connected to the left or right input of 4,

4. the description of Ty, and

5. the sets of gates that read from each individual element of the graft, Rg(-).

Items 1 - 3 can be described by a constant-length bitstring, depending only on the enumeration
of all possible “graft” sub-circuits implied by our characterization of gate elimination. We
code the exact Y-Tree Ty (item 4) explicitly for now and eliminate it later. Here, we are
concerned with how to efficiently code the sets Rg(+) without sending explicit “pointers” to
nodes of F', which remain too expensive per the discussion of transmitting n above.

To code these wire movements efficiently, Alice will exploit the relationship between
the gates reading from 7 in F' and the gates reading from 7 in G as determined by gate
elimination. Bob knows the contents of Rp(n) and Rp(—n) — the sets of costly gates reading
from (=)n in F. Collect the gates that read from the graft, in both G and F:

R = Rg(n) U Rg(—n) U Ra(d) URG(—9)
Rp = Rp(n) U Rp(-n)

Observe that Rg C Rp because during the single run of gate elimination that transforms
Figure 6b into Figure 7, all the wires reading the eliminated gate § are “inherited” by 7.
Furthermore, Bob knows n from x and thus can reconstruct Rp, so Alice can identify any
wire relevant to the graft by coding “the j-th element of Rrp.” Here we must apply the
assumption that optimal circuits for f have at most constant fanout, independent of n, to
bound the length of these relative wire-identifiers by a constant. Thus, Alice can identify
exactly which wires should be moved from 7 to read (—)d in G. Inspecting Figure 6b again,
she can also code where they move using constantly many bits, because there are only two
options: reading from —d or § directly.

This discussion has outlined the base case of our encoding/decoding argument, where only
a single Y-tree is transmitted to Bob. Notice that, if there are multiple combiner-disjoint
Y-trees in (G, an essentially identical strategy could encode all these Y-trees. However, reverse
gate elimination can create somewhat more complex structures: specifically, we can have
combiners d; grafted onto a distinct combiner ¢;, instead of a gate n that was present in the
original circuit F. These compounded combiners correspond exactly to the “adding a triple”
case in the proof that Y-Tree decompositions exist (Theorem 19) where o occurs between 8
and an existing combiner.

Even so, Alice can use the fact that every combiner J; has a unique origin 7 to identify
the “first” combiner grafted onto 7 and instruct Bob to add subsequent 7-derived combiners
in depth-respecting order. We now prove the required properties of origins and combiners.

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

M. Carmosino, N. Dang, and T. Jackman

» Definition 20 (Original & Originating Gates). Let G and F be circuits, p be an all-stops
restriction, and suppose p(G) = F. We call a gate 8 of G original if it is not garbage
collected by p — i.e., if B € F. Furthermore, let G have a Y -tree decomposition with elements
(8, b, T). The origin of each § is the depth-maximal original gate n such that X variables
occur in G[n] and there is a path from 1 to the output of G through d.

The origin of a combiner can be depth-trivial: a single input gate x; or the unique output
gate are both valid origins. Intuitively, if 5 is the origin of J, then § “takes” wires from
1 when it is grafted into the circuit. When the maximum fanout of an optimal circuit is
constant, this imposes a hard limit on the number of compounded combiners that share the
same origin.

» Lemma 21 (Every Combiner has a Unique Origin). Suppose G is a circuit with Y -tree
decomposition D, and let (§, b, T) be an arbitrary element of D. Then & has exactly one
origin in G.

Proof. We argue by induction on the structure of G, exploiting that the DeMorgan basis

has fan-in two. We will walk “down” the circuit from ¢ until an original gate is encountered.

By definition, ¢ has only two inputs: input b leads to a Y-tree, and input —b leads to a
sub-circuit containing X variables. Thus we must go down the —b argument to find the
origin. Argument —b = gate [is either another combiner in the decomposition or not — if 3
is not a combiner, then it is an original gate, and thus unique because the path to g from
0 was fully determined. f is topologically maximal because it was the first non-combiner
encountered walking “down” the circuit in topological order. Then, if argument —b is another
combiner, we are done by induction: there is simply another deterministic choice to find a
sub-circuit where X variables occur, because argument b of 3 is also a Y-tree. |

Finally, observe that there are only constantly-many ways to eliminate a binary gate by
a simple simplification (Claim 16) as depicted in Figure 8. This follows by brute-forcing all
possible sequences of simple simplifications around eliminating one costly gate, formalizing
the idea of a particular “graft” sub-circuit from earlier in this section: call each possible
realization of sub-circuits a widget.

e e
A ST A S

Figure 8 The four possible widgets in a splice code (up to symmetry). The node labeled y
represents which child of the combiner ¢ is the Y-tree. A dotted edge not leading to another node
represents one (or more) possible connections to a costly gate outside of the widget. A solid edge not
leading to another node represents one (or more) guaranteed connections to a costly gate outside of
the widget.

29

30

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

Simple Circuit Extensions for XOR in PTIME

D.2 Grafting Y-Trees: Efficient and Explicit Encodings

Suppose 7 is a gate in some circuit C, and let the gates (1,...,(<, read n in C. We use
n-relative fanout-coding to name another gate 3 in a circuit C’ obtained by transforming C
by writing an ¢-bit vector v where:

1, if § reads B in C'

0, otherwise

Uz(ﬁ?ﬁ) = {

Trivially, when C' = C” and we fanout-code 7 relative to itself, the result is 1) o g¢=Ffo(n),
Suitability for fanout-coding is the prime motivation of our requirement that gate identifiers
are never mutated (only recycled or discarded) by circuit manipulation.

» Definition 22 (Splice Codes). Suppose F is a circuit with mazimum fanout £. A splice code

FE is a sequence of tuples that encode a transformation of I into G, a circuit for a simple

extension of F'. The splice code begins with an Origin Indicator Vector: a bitvector of

length CC(f) where entry i is set to 1 iff gate i of F' is an origin. Then, for each origin 1,

a sequence of splices follows — one splice per combiner originating in n. A splice is:

1. Target Gate: Which gate should be grafted onto? Written as n-fanout-relative code.

2. Selected Wires: Which wires does the spliced widget take from the target gate? Written
as £-bit indicator vector, where 1-bits must be a subset of the target gate’s code.

3. Widget: A constant number of bits naming one of constantly-many combiner widgets.

4. Wire Moves: Map from taken wires taken to gates of the widget: at most (¢ — 1)
constant-length identifiers.

5. Explicit Y-Tree: A fully specified read-once formula in the Y wvariables.

» Theorem 23 (Splice Codes for Simple Extensions). Suppose g € Fr1m is a simple extension
of f € F, and let G be an isomorphism class of minimal circuits for g. Then, there is

an “unlocked” isomorphism class UL(G) of minimal circuits computing f such that, for
every representative F of UL(G), there is a splice code E such that an efficient algorithm
Decode(F, E) prints a circuit in the isomorphism class G. The length of E is O({ - |F|-m -
bits(Y)), where ¢ is the mazimum fanout of F' and bits(Y') is the number of bits required to

code a Y -tree on m wvariables.

Proof. Take a representative G of the isomorphism class of ciurcits G with gates named
such that they are compatible with depth and a topological order. Let D be the Y-tree
decomposition of G (Theorem 19) and let p be the particular all-stops restriction of G implicit
in the proof of Theorem 19 such that F' = p(G) computes f and F is optimal for F'. We will
“reverse” p to obtain a circuit isomorphic to G from F'.

First, list all the origins in G — it is immmediate from the definition and inspecting p
that this is possible. Now, if the set of combiners associated with each origin is of size 1, it is
clear that the trivial fanout-relative code is used to set the Target Gate for each combiner,
and the legnth lower bounds are immediate because the overhead of encoding sequences is
linear, and all fields of the sequences are linear in ¢, a constant, or proportional to the size
of a particular Y-tree. Origin gates are never named explicitly; the order of sequences of
splices suffices to associate them with the appropriate splice-sequence.

Suppose now that some gates of G originate ¢ combiners where 1 < ¢ < m and fix an
arbitrary such origin n. To order the splices, perform breadth-first-search starting from
1 in G and observe which wires of 7 have been “spliced” with which combiners in each
stop of the all-stops restriction p. Using this ordering and the sub-sequences of p where
combiners originating in n are eliminated, observe that at each step there is there is a set of

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

M. Carmosino, N. Dang, and T. Jackman

maximally-shallow available combiners that could be grafted to: those between 1 and the
output of the circuit which feed into a gate that used to be fed by n directly.

Each available combiner must be uniquely identified by an n-relative fanout-code, because
otherwise an intermediate normal circuit p would not be size-optimal: we could restrict
using the key embedded in p to find that the same gate must read 7 twice, which triggers a
resolving gate-elimination. Therefore, even compound-combiners can be uniquely regenerated
by splice codes.

To conclude the proof, observe that the isomorphism class of F' is exactly UL(G’)7 as
desired, because all coding operations relied only on being given a circuit isomorphic to F’
whose gates were named in depth-sorted and thus topological order. This is because our
formalization of circuit manipulation never introduces “fresh” identifiers; it only deletes or
recycles them. |

D.3 The Final Ingredient: Truth-Table Isomorphism

There are two issues with trivial brute-force over splice codes. First, there are too many
base circuits for XOR,,: there are at least as many optimal XOR,, circuits as there are
labeled rooted binary trees with n leaves. Let C,, be the n'® Catalan number; there are
n! C,_1 = 2¢("1°8") Jabeled rooted binary trees [42]. Similarly, there are m!C,,_; explicit
Y -trees reading all m variables. However, in both expressions, the dominating factorial terms
n! and m! arise from permuting the labels of the variables. But two circuits which can be

transformed into one another by permuting inputs compute truth-table isomorphic functions.

» Definition 24 ([30, 3]). Two functions f,g € F,, are truth-table isomorphic if there exists
a permutation m on [n] such that g(x) = f(w(z)).

It is straightforward to connect truth-table isomorphism with permuting circuit inputs.

» Observation 25. The following two statements, the first a universal statement and the
second existential, describe the relationship between permuting circuit variable labels and
truth-table isomorphism.

(1) If a Boolean function f € F, is truth-table isomorphic to another Boolean function g € Fy,
then any circuit for f can be transformed into some circuit for g by relabeling input x;
with x4(;y for all i € [n] using some permutation o on [n].

(2) If a given circuit for f € F, can be transformed into a circuit for g € F,, by relabeling
input x; with T,y for all i € [n] using some permutation o on [n] then f is truth-table
isomorphic to g.

Proof. We first prove (1). Let 7 be the witnessing permutation between f and g, i.e.

f(x) = g(n(z)). Observe that f(m~1(z)) = g(n(v71(x))) = g(z). Let F be any circuit for
f. Let G be the circuit obtained by relabeling each input x; by x,@;). We wish to argue G
computes g. Observe that evaluating g on input z is the same as evaluating F on 7~ (z)
Since Zn(x-1(;y) = @;. Therefore G(z) = F(r ! (z)) = f(v~ () = g(z).

For (2), fix some optimal circuit F' and let o be the witnessing permutation used to
relabel F' to obtain G, a circuit for g. We have f(z) = F(z) = G(o~}(z)) = g(c71(x)). As
o is a permutation on [n], o1 is also a permutation on [n] and thus f and g are truth-table
isomorphic. |

The implication is that do not need to try every possible base XOR,, circuit or even try
every explicit splice code. We can take an unlabeled base circuit and unlabeled Y-trees and
assign variables arbitrarily. We then just need to check whether the function our reconstructed

31

32

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

Simple Circuit Extensions for XOR in PTIME

circuit computes is isomorphic to g. This is feasible because (rather surprisingly) truth-table
isomorphism testing can be done in polynomial time.

» Theorem 26 (Corollary 1.3 of [30]). Given the truth-tables for two Boolean functions,
testing whether they are equivalent under permutation of variables can be done in time ¢©™
where ¢ is a constant.

To this end we formally define “unlabeled” optimal circuits.

» Definition 27 (Open Optimal Circuit). A circuit is open if all of its inputs are unlabeled.
An open circuit is optimal for a Boolean function f if there exists some labeling of its’ inputs
so that the resulting circuit is an optimal circuit for f.

D.4 An Efficient Simple Extension Problem Solver for XOR

The following algorithm, when given L, a complete list of representatives from each open
isomorphism class of optimal circuits for f, decides the f-Simple Extension Problem. By
“implicit splice code,” we mean a splice code without the Y-trees specified.

Algorithm 2 Ckt-SE-Solver(n € N, g € Frnim, L)

1: Verify 3p € {0,1}™ such that g|, = f and return False if not
2: Verify g is non-degenerate and return False if not
3: for each open circuit F' in L do
4: s < number of costly gates in F’
5: label the open nodes of F' by an arbitrary permutation of z1,...,z,
6: for each implicit splice code E of length at most m + s do
7 d < number of combiners recorded in E
8: for each aq,...aq € N s.t. Zle a; = m do > Valid distribution of variables to
Y -trees
9: for each d-tuple of read-once formulas with a1, ...aq open nodes do
10: label the open nodes of each read-once formula by an arbitrary permutation
of y-inputs
11: insert the read-once formulas into combiner instructions of E in lexico-
graphic order
12: G « Decode(F, E)
13: if tt(G) ~ tt(g) then > Test using the procedure of Theorem 26
14: return True

15: return False

» Theorem 28. Given L is a list with a representative from every optimal open circuit class
of f, Algorithm 2 decides the f-Simple Extension Problem in time |L| - 20¢(+m) where £ is
the mazimum fanout of any node in any circuit in L and s = CC(f).

Proof. We first prove completeness, i.e. that if g is a simple extension then Algorithm 2
returns true. By definition of simple extension, the checks in steps 1 and 2 pass. Since g
is a simple extension, CC(g) = s + m; fix any optimal circuit G for g. By Theorem 23,
there is an explicit splice code E and circuit isomorphism class representative F' such that
Decode(F,E) produces a circuit (@ isomorphic to G. Let T1,...T; be the explicit Y-trees
in £. During some iteration of the algorithm (1) the implicit splice code will be consistent
with F and (2) F and Ti, ... T, the chosen open read-once formulas, will be isomorphic to

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

M. Carmosino, N. Dang, and T. Jackman

open(F),open(T1),...open(T;) (where open(C) is circuit C' with its input labels stripped
away). In this iteration, let F’ and E’ be the arbitrary explicit completion of the open circuit
F and implicit splice code E chosen by the algorithm. Let G’ = Decode(F”, E') and observe
open(G’) is isomorphic to open(G). Thus there is a permutation of the variables of G’ such
that the resulting circuit is isomorphic to G. By part (2) of Observation 25, the function
computed by G’ is truth-table isomorphic to g and thus the algorithm accepts.

For soundness, observe that if the algorithm accepts then it passed step 1 and 2 which
demonstrate the existence of a key and non-degeneracy of g. Finally in steps 12 and 13,
the algorithm must have constructed a constant-free circuit of size s +m which computes a
function truth-table isomorphic to g. Applying part (1) of Observation 25 we can transform
this circuit into a circuit for g by relabeling inputs. This constant-free circuit of size s +m
for g, in conjunction with the fact f is non-degenerate and the existence of a key, guarantees
CC(g) = s+ m by Lemma 14. Therefore, by definition, g is a simple extension of f.

For the running time, we first observe that steps 1 and 2 take 20(*™) since the algorithm
just verifies whether one of the 2™ restrictions yields ¢t(f) (and s = Q(n)) and verifies for
each of the m extension variables there is an assignment where flipping the value of the
variable changes the output of g. There are then |L| iterations where each run in time
20(L(s+m)) wwhere ¢ is the maximum fanout of any node in any circuit in L as the algorithm
builds this number of explicit splice codes. The algorithm tries every explicit splice code
where y-inputs are labeled arbitrarily (say, in increasing order). The number of such codes is
Soit r(d) where r(d) is the number of such splice codes with d combiners. We see

d
rd)= Y]t

ai+...+ag=m j=1
a;eENT
where t(a;) is the number of read-once formulas with a; open nodes.

We first bound t(a;). A number of read-once formula with a; open nodes corresponds to
the number of rooted binary trees where each internal node is labeled A or V and each edge is
weighted 0 or 1 (representing if there is a negation between those two nodes). The number of
unlabeled rooted binary trees with n leaves is C,,_1—the (n—1)*" Catalan number [42]. Thus
t(a;) = Cqy—1- 2a;—1 . 92(a;—1)+1 — Ca;—1 -22%; where the latter factors are from labeling the
internal nodes and edge weights (including the output edge) respectively. Since C,, 1 < 4%,
we have t(a;) < 2°% [42]. Since the a; sum to m, then H;'l:1 t(a;) < 2™ = 29(m)_ The
number of solutions to a1 + ...+ ag = m where a; > 0 is (mj{_d;l) [8]. Notice that
(mdoly < yoymad=t (mid=l) — gmid-1 8] Since k < m then this is 2°0™). Therefore
r(d) < 2°0™) and thus the number of explicit splice codes is at most m2°(m) = 20(m),

Once an explicit splice code is constructed, constructing G with the decoder takes
poly(s+m) time and testing truth table isomorphism takes O((s+m)?)-20+m).20n+m) —
20(ntm) a5 the algorithm has to write the truth-table and then run the algorithm from
Theorem 26. Since s = Q(n) this takes 29(*™) . Overall the running time is therefore
1L]-29(¢ - (s + m)). .

In general, |L| may be exponential in |tt(g)|, £ may be w(1), and s may be superlinear in
n. As such Algorithm 2 is not a polynomial time algorithm for the Simple Extension problem
in general. However, as noted in Corollary 33, these parameters for XOR,, are tractable. This
yields our main theorem:

» Corollary 29. The Simple Extension Problem with the base function f = XOR,, is in P

33

34

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

Simple Circuit Extensions for XOR in PTIME

E Optimal XOR Circuits Are Binary Trees of XOR, Sub-Circuits

Algorithm 2 of Section D can only rule out a particular f from showing hardness for
MCSP via f-SEP when the optimal circuits for f are well-understood. It requires an exact
characterization of the set of all optimal circuits—a requirement that currently is rarely
fulfilled.

One of the earliest studied explicit Boolean functions, XOR, is one of the only functions
for which we even have partial fulfillment of this ornery prerequisite. Recall the definition
XOR, the parity function.

1 if an odd number bits of x are 1

» Definition 30 (XOR). For z € {0,1}", XOR,(z) =
0 otherwise.

Schnorr proved one of the first explicit circuit lower-bounds on XOR.
» Theorem 31 ([39]). XOR,, requires at least 3(n — 1) gates in the DeMorgan basis.

This lower-bound in fact has a matching upper bound and the construction is straightfor-
ward: take any binary tree with n leaves labeled x4, ..., z, where the n — 1 interior nodes
have been labeled by @ and replace the @& nodes with any circuit of size 3 that computes
XORjy. Furthermore, since — gates do not count towards the circuit size, any circuit for
XOR,, can easily be transformed into an equal size circuit computing -XOR,, and vice versa.
Combining these observations yields:

» Corollary 32 ([39, 43]). A circuit C computing (—)XOR,, is optimal if and only if |C| =
3(n—1).

However, this leaves open how those 3(n — 1) gates can be arranged. Are there optimal
circuits for XOR that do not follow the upper-bound construction? Previous work showed
that in R, all optimal circuits follow this construction: optimal XOR,, circuits are binary
trees of (n — 1) XORy sub-circuits [25]. In this section, we extend this characterization, as
seen in Figure 1, to D.

» Theorem (Informal Statement of Theorem 37). Optimal (=)XOR,, circuits in D partition
into trees of (n — 1) (=)XORg sub-circuits.

This structural characterization implies the crucial combinatorial parameter bounds that
are required to apply Algorithm 2 and therefore rule out the possibility of proving hardness
of MCSP via XOR-SEP.

/ DeMorgan Basis \ ,,,,,,,,,,,,,,,,,,,,,,,,,, x

ST T Tt . : /" DeMorgan & Red’kin Bases \
! Red’kin Basis ! | !
@ @ 1 @ @ 1 XOR6 ﬂxorz6
. XOR, ~XOR, ' XOR, \ ,,,,,,,,,,,,,,,,,,,,,,,,,, ,f

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

M. Carmosino, N. Dang, and T. Jackman

» Corollary 33. The following properties hold for XOR,,, where n > 1
The size of optimal circuits computing XOR,, is linear (Corollary 32).
The mazimum fan-out of such circuits is a constant.
The number of optimal circuits for XOR,,, up to permutation of variables, is 20

Before we prove our main result of this section, we introduce some auxiliary facts that
we will repeatedly require.

E.1 Basic Properties of XOR

We first give two basic facts about (—)XOR,, that are immediate consequences of the definition.

» Fact 1 ((—=)XOR is Fully DSR). XOR,, is fully downward self-reducible, i.e. for any input
x € {0,1}"™, any non-empty sets S and T partitioning [n],

XOR,, () = XOR3(XORg/(xs), XOR 1 (z7))

where xg = {x; :i € S} and xp = {x; : i € T}. Furthermore, this means for any assignment

as of variables in vs, XOR,,(7)|as = (7)XORp|(x7). The same is also true of =XOR,(x)

» Fact 2 (All Subfunctions of (—)XOR are Non-Degenerate). (—)XOR,, not only depends on
all of its inputs but it is also maximally sensitive, i.e. for all i € [n], for inputs x € {0,1}",

(—\)XORn(I) 75 (ﬂ)XORn(IL‘ (&) ei).

Combining Facts 1 and 2, if we substitute for a single variable in a (=)XOR,, circuit
where n > 2 are guaranteed to get a circuit which computes (=)XOR,,_;. Applying the tight
version of Schnorr (Corollary 32) we see that subsequent simplification cannot remove more
than three costly gates. Formally,

» Corollary 34 (Elimination Rate Limit for Optimal XOR Circuits). Let C' be an optimal circuit
computing (—)XOR,, where n > 2. Let C' be the circuit after substituting x; = « for some
i € [n] and o = {0, 1} and applying simplifying. We have that |C'| > |C| — 3 and C' is not
constant.

We will repeatedly apply this corollary in our proof: deviation from the prescribed

structure will often allow us to substitute and remove more than three distinct binary gates.

The other main source of contradictions will be substitutions and rewrites that disconnect
inputs (violating Fact 2) or that leave inputs with exactly one costly successor. This violates
the fact that XOR,, reads each of its inputs twice.

» Lemma 35 ((—)XOR is Read-Twice (Folklore)). Let C' be a normalized optimal circuit
computing (—)XOR,, where n > 2. The fanout of every variable C' is exactly 2.

» Remark 36. In the proofs of this section, we will omit negations whenever reasonable, since
we are more interested in the binary gates which solely contribute to circuit size in D. We
write « is a costly successor to B to mean (=) is an input to binary gate «.

Proof. Let C be an optimal normalized circuit computing (—)XOR,, for arbitrary n. Suppose
there is a variable z; whose fanout is not 2. There are two cases: (1) the fanout of x; is 1
and (2) the fanout of x; is at least 3.

(1) Take «, the assumed unique costly successor of x; and let 8 be the input to . Let X’
be the set of input variables that 5 depends on (i.e. that are present in the sub-circuit rooted
at 8). Observe that x; € X’. Consider the truth-table of the sub-circuit rooted at 8 and

35

36

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

Simple Circuit Extensions for XOR in PTIME

observe it must be a non-constant function of the variables of X’. If it were constant, then we
could replace 8 with this constant and remove « from the circuit via a gate elimination rule,
reducing the size of the circuit and violating optimality. Therefore, there is an assignment of
the variables in X’ such that if we substitute and simplify, eventually a constant will feed
into « that allows us to remove it with a fixing rule. This disconnects x; from the circuit,
which violates Fact 2 since we did not substitute for x; and thus the the resulting parity
function must still depend on it.

(2) Suppose z; has more than two costly successors. Let o, s and ag be three of these
and without loss of generality assume these are indexed in descending depth. Observe that
(—)as is not the output of the circuit as otherwise we could substitute z; to be some constant
that fixes a3 and make the circuit constant. This would violate the rate limit on eliminations
for optimal XOR circuits (Corollary 34). Let S35 be the costly successor of a3 and notice
that, since oy, as and ag are in descending depth order, 3 is a new distinct gate. Thus if
we substitute x; to fix 83 and simplify, we can remove a1, as, @3 and B3 with a passing or
fixing rule applying to 83 after applying a fixing rule to 3. This violates Corollary 34.

Both cases reach a contradiction and therefore every input has two costly successors in
any normalized optimal circuit computing (—)XOR,,. <

E.2 Optimal (-)XOR,, Circuits Are Binary Trees of (—)XOR, Blocks

We now have the tools required to show that binary trees of optimal (—=)XORy subcircuits
are the only optimal circuits for computing XOR,,. Formally,

» Theorem 37. Optimal (—-)XOR circuits partition into trees of (—)XORz sub-circuits —

even when NOT gates are free. Formally, for every circuit C' with the minimum number of

AND,OR gates computing XOR,,, there is a partition of the gates of C into (n — 1) blocks

together with a multi-labelling of each wire w in C by tuples (i,t) where t € {in,out, core}

describes the role that w plays in block i, such that:

1. Fach block is a three-gate XORy sub-circuit, with distinguished input, output, and core
wires.

2. The input wires of every block are also the output wires of a different block or the input
gates.

3. Contracting all the core wires of C' results in a binary tree.

The proof will proceed via induction, however most of the work will be in proving that we
can find a (—)XORg block in any XOR,, circuit which we can “peel off” with a single variable
substitution. The resulting circuit will compute XOR,,_1 allowing us apply our inductive
hypothesis in order to get a partition we can lift back up to the original circuit. For this
reason we separate this out as a lemma.

» Lemma 38. Let C be a circuit computing XOR,, for n > 3. There exists two inputs x;
and x; that feed into a block B in C as described in Theorem 37.

Proof. Let C be an optimal normalized circuit computing XOR,, where n > 3. We first
identify two variables which will be inputs to block B (which we will later prove that
B = (—)XORz). Let o be a maximum depth binary gate of C. As in the proof of Theorem 31,
we know that o must read two distinct inputs z; and x; for some 4, j € [n] since otherwise
we can apply a simplification rule and remove «, which contradicts that it is an optimal
normalized circuit. Our local view of a can be seen in Figure 9, where dashed arrows indicate
one (or more) adjacent binary gates whose existence has not yet been established.

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

M. Carmosino, N. Dang, and T. Jackman

Figure 9 The local neighborhood of «

By Lemma 35, we know that both x; and z; have exactly two costly successors. Let §;
be the other successor of x;. We first observe that neither a nor §8; can be the output of the
circuit: if they were, some substitution of x; would fix the output and leave the resulting
circuit constant, violating Corollary 34. Hence, o and (; must each feed into at least one
more costly gate. Let v be a costly gate fed by a. We remark that v could be §; and hence
in Figure 10, we denote v with a dashed node until we establish v # j;.

Figure 10 Our view after establishing 3; # « and neither are the output

We first show that v is the only successor of a. Towards a contradiction, suppose « also
feeds other gates besides v. If it feeds more than one other gate, then substituting z; to fix
« immediately eliminates more than three gates. Hence, it can at most feed one more gate
V. In particular, we must analyze two cases depending on whether or not 3; is distinct from
v and /. These cases can be seen in Figure 11. In both cases, we can eliminate more than 3
costly gates, violating Corollary 34.

1. Assume f; is distinct from v and v/. Fixing a with x; will eliminate four distinct gates,
«, ﬁiv v, v

2. Assume f3; is not distinct from v and v/. Without loss of generality, assume §8; = v/’

Substituting x; to fix « also fixes (; since both of its inputs are now constants. If 5; has
any costly successors besides v then we are done, since that eliminates at least four gates

(a, v, Bi, and any distinct successor). If 8; only feeds into v, then v also becomes fixed.

Hence, v cannot be the output of the circuit and thus it must have at least one costly
successor that is distinct from «, v and S;. This successor can also be eliminated from
our substitution.

We now show that v and §; are distinct. Assume otherwise, then fixing o by substituting
x; also fixes (3; = v, which we know is not the output of the circuit. This eliminates at least 3
(and therefore exactly three) gates (o, 3;, and §;’s successor which we will call v) and results

37

38 Simple Circuit Extensions for XOR in PTIME

A A
: 4 :
AT ;

1 AN
N () ()
(a) B; is distinct from v/ (b) B; is not distinct from v

Figure 11 The two cases if « feeds two gates

wes in an optimal XOR,,_; circuit. We now consider the other gate fed by z; which we will call
su ;. Again, there are two cases as seen in Figure 12: either 3; is distinct from v or they are
1305 the same.

o o/

Wb

a) B is distinct from v (b) B; is not distinct from v

6__-»

A
\
\ <
-_7
@ ®__-’

Figure 12 The two cases if v = 3;

1396 If B; does not also feed into 3;, then x; feeds only 3; in the resulting circuit contradicting
e Lemma 35. If B; is fed by f;, then consider instead substituting x; to fix ;. Observe that j;
1es is not the output of the circuit, and hence fixing it eliminates four gates: «, §;, 8;, and B;’s
190 costly successors. In both cases we reach a contradiction, hence ; # v. Furthermore, notice
uo that §; cannot be the output gate and it must have only one costly successor. Otherwise,
un using x; to fix §; would eliminate at least four gates: «, 3;, and the costly successors of ;.
u Hence, we arrive at the local view around h as shown in Figure 13.

1403 Now, if we fix o using z;, then «, §;, and v are eliminated and thus must be the only
uos gate that are eliminated. Thus, if 3;, the other successor of z; is distinct from these three
wos gates, then z; is left with one costly successor in the resulting circuit computing XOR,,_;
ws thus violating Lemma 35. Hence §; must be one of 3; or v. We will show it must be §;.

1407 Suppose, for the sake of contradiction, that 3; = v. We can see that 3; must be fed by
wes v, otherwise we could substitute z; to fix & and the resulting XOR,,_; circuit only reads x;
uo once. Now that f; is fed by v, if we substitute x; to fix 3;, then this eliminates §;, @ and v

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

M. Carmosino, N. Dang, and T. Jackman

Figure 13 Our view after establishing v # f;

and disconnects x; entirely from the resulting circuit, but the resulting (—)XOR,,_ circuit
must still depend on x;.

We now have that §; = B;—Ilet us call the gate 3. Recall § has exactly one costly
successor, and if this costly successor isn’t v and is another gate then fixing o with x;
eliminates three gates (o, §,v) but leaves x; with exactly one costly successor it inherited
from (. This is a contradiction, and hence 8 must feed v which yields a block B as shown in
Figure 14. <

Figure 14 The local area around z; and z; form a block B.

We now provide the proof of Theorem 37

Proof of Theorem 37 using Lemma 38. We prove this via induction. For n =1 and n = 2
the theorem trivially holds: (—)z; is the unique normal optimal circuit for (—=)XOR; and
normal optimal (=)XOR; circuits trivially define a single block.

Assume the statement holds for some £k — 1 > 2. Let C' be a normal optimal circuit
computing (—)XORy, for k > 3. By Lemma 38, we know C' must have a block B that is fed
by two distinct inputs (—)x; and (—)z;. Let the three gates be «, #, and v where (—)v is
the output gate of B. We label the wires from (—)x; and (—)z; as in, the wires from (—)v
as out and all other internal wires of B as core. We first need to partition the rest of the
circuit into blocks and ensure that the two out wires are in wires to the same block in the
rest of C.

If we substitute z; = b to fix o and simplify, we see that z;’s successors are replaced
by (—)v’s successors and that the three costly gates in B have been eliminated. Therefore
the circuit computes (—)XORy_; and is optimal. Applying the inductive hypothesis, we can

39

40

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

Simple Circuit Extensions for XOR in PTIME

partition the remaining circuit into blocks which we lift back to the original. Notice that
x;’s new successors are in the same block and therefore in C, (—)v’s successors are also in
the same block as desired.

It remains to prove that B computes (—)XOR,. If we substitute 2;; = b to fix h and rewrite
as above we see that B reduces to (=)z;, i.e. B(b,x;) = (-)x;. We argue that if we instead
substitute 2; = 1 — b, then B would also reduce to (—)z;. It cannot reduce to a constant as
otherwise C, which now computes XOR;_; does not depend on z;, contradicting Fact 2. We
also observe B cannot reduce to just z; in both cases (or —z; in both cases), as otherwise
we could replace B with z; (or —z;) and C would still correctly compute XOR,, with three
fewer gates — contradicting that C' is optimal. Therefore B(1 — b,z;) = =B(b, z;) and the
only binary Boolean functions that satisfy these two equations are XORy and -XOR,. <«

	1 Introduction
	1.1 Our Results and Contributions
	1.2 Related Work
	1.3 Discussion and Future Directions
	1.4 Proof Techniques
	1.4.1 The Structure of Optimal XOR Circuits
	1.4.2 A Fixed-Parameter Tractable Simple Extension Solver
	1.4.3 Paper Outline

	2 Revisiting ETH hardness for MCSP* via Simple Extensions
	2.1 The f-Simple Extension Problem
	2.2 An Explicit Reduction BPIS from to f-SEP*

	A Circuits
	B Gate Elimination
	C Structural Properties of Optimal Simple Extension Circuits
	C.1 Restrictions With ``Speed Limits'' on Gate Elimination
	C.2 Y-tree Decomposition

	D The f-Simple Extension Problem is Fixed-Parameter Tractable
	D.1 Grafting Y-Trees: Key Ideas & Structural Properties
	D.2 Grafting Y-Trees: Efficient and Explicit Encodings
	D.3 The Final Ingredient: Truth-Table Isomorphism
	D.4 An Efficient Simple Extension Problem Solver for XOR

	E Optimal XOR Circuits Are Binary Trees of XOR2 Sub-Circuits
	E.1 Basic Properties of XOR
	E.2 Optimal (¬)XOR Circuits Are Binary Trees of (¬)XOR2 Blocks

