

Ngu Dang

Boston, MA, 02215 — dsngu97@gmail.com — nathandang97.github.io — linkedin.com/in/ngu-dang — github.com/NathanDang97

Education

Boston University <i>Doctorate in Computer Science</i>	09/2020 - 05/2026 (expected)
<ul style="list-style-type: none">– GPA: 3.93/4.00 – Passed the PhD Candidate Qualifying Exam. Thesis Proposal scheduled in 11/2025.– Relevant Coursework: Machine Learning, Natural Language Processing, Neural Networks and Deep Learning (DeepLearning.AI Professional Certificate), Data Science (IBM Professional Certificate).	
Clark University <i>Bachelor of Arts in Computer Science</i>	01/2018 - 05/2020
<ul style="list-style-type: none">– Minors: Data Science, Mathematics– GPA: 3.93/4.00 – First Honors Dean's List in 2018, 2019, and 2020.– Graduated with <i>Summa Cum Laude</i> and obtained <i>Outstanding Academic Achievement Award in CS</i>.	

Skills

Programming: Python, Java, C++, MySQL.	Script: HTML, CSS, LaTeX.
Libraries: Pandas, Numpy, Scipy, PyTorch, TensorFlow, Keras, Scikit-learn, Seaborn, NLTK, Z3.	OS/Tools: Linux, Windows, Git, Jupyter, Google Colab, Visual Studio, Microsoft Office.

Projects

Tweet Dialect Classifier	06/2025 – 07/2025
<ul style="list-style-type: none">– Built a dialect classifying pipeline in Python with BERTweet-based model that distinguishes African American Vernacular English from Standard and regular African American English and achieved 0.95, 0.99, and 0.97 for accuracy, recall, and F1 score respectively.– Integrated the classifier into a bias-aware sentiment analysis pipeline, with statistical analysis (Kruskal-Wallis H Test) to provide insights on fairness in interpretation of social media text across different models (i.e. RoBERTa, RoBERTa-Latest, BERTweet). Github link.	
Real-Time Object Detector	05/2025 – 06/2025
<ul style="list-style-type: none">– Built a real-time object detection system by training YOLOv8 on Pascal VOC (Python) and implementing C++ ONNX Runtime inference with OpenCV for webcam-based detection.– Applied transfer learning with pretrained YOLOv8n weights and integrated ONNX Runtime C++ API to deliver fast, resource-efficient object detection with dynamic bounding box visualization and minimal latency. Github link.	
Human Activity Recognition Using Deep Learning	04/2025 – 05/2025
<ul style="list-style-type: none">– Built a deep learning pipeline using Python and PyTorch to classify human activities from Wi-Fi CSI data, achieving 0.98 accuracy score with a custom CNN-LSTM model.– Designed a complete preprocessing workflow including reshaping, normalization, smoothing, and statistical feature augmentation to improve model robustness. Github link.	
Churn Predictor for Subscription Services	03/2025 – 04/2025
<ul style="list-style-type: none">– Implemented an end-to-end churn prediction pipeline in Python for a video streaming service using a real-world imbalanced subscription dataset using an ensemble of three models — a neural network, XGBoost, and Random Forest — using weighted soft voting to optimize class ranking and maximize AUC.– Engineered advanced features (e.g., ratio metrics, interaction terms behavioral buckets, etc.) on top of 20 given features to boost signal quality and improve model discrimination and achieved a ROC AUC score of 0.75. Github link.	

Experience

Boston University <i>Graduate Research Assistant</i>	09/2020 – present
<ul style="list-style-type: none">– Working on joint projects on computational lower bounds and upper bounds of complex algorithms and design improvements on top of current state-of-the-art results.– Implementing our algorithms, experiments, and scripts simulating Boolean circuits in Python using Z3 SAT-solver library.	
Clark University <i>Undergraduate Research Assistant</i>	05/2019 – 05/2020
<ul style="list-style-type: none">– Contributed to computer vision and computational geometry research projects for the Computer Science Department.– Implemented experiments, statistical analysis (e.g. ANOVA, Kruskal-Wallis), visualization, and geometrical simulations in Python and Java.	