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Abstract

The Minimum Circuit Size Problem (MCSP) is a fundamental meta-computational prob-
lem and whether it is NP-hard is still beyond the current state-of-the-art. A natural question
to ask ourselves is that would any dramatic ramification follow if MCSP is indeed NP-hard? Ka-
banets and Cai [KC00] showed that if a positive answer holds, then the class of linear-exponential
time problems will have superpolynomial circuit lower-bounds. This work is the landmark for
a long and active sequence of work on understanding the power of reductions hard problems to
MCSP. In this paper, we provide detailed expositions on the following well-known results on
MCSP and NP-hardness.

1. The aforementioned result by Kabanets and Cai [KC00] showed if MCSP is NP-hard
under “natural” many-one reduction, then superpolynomial circuit lower-bounds hold for
linear-exponential problems.

2. The same circuit lower-bound also holds under “parametric honest” or “natural” Turing
reduction which was shown by Saks and Santhanam [SS20].

3. While NP-hardness of many natural problems can be shown under “local” poly-time
reductions, Murray and Williams [MW17] showed that such reduction cannot be used to
show NP-hardness of MCSP.

1 Introduction

The Minimum Circuit Size Problem (MCSP) asks: given the truth table of a Boolean function f
together with a positive integer s, does there exist a circuit of size at most s that computes f?

Problem: MCSP

Input: A tuple ⟨T, s⟩ consisting of a truth table T ∈ {0, 1}2n for a Boolean
function f : {0, 1}n → {0, 1} and an integer s

Question: Is there a circuit C with at most s gates computing T?

MSCP formalizes the feasibility problem for integrated circuit design where it is important to
minimize space and execution speed of a computational component. The search variant SearchMCSP

∗IBM
†Boston University

1



—which asks for a witnessing size-s circuit that computes f — formalizes the circuit design problem
itself, given a truth-table specification. Thus, MCSP is of immediate practical interest to computing
technology. As such, the minimization of circuits was already studied in the Soviet Union when
investigating whether brute-force search can be generally eliminated [Tra84].

However, motivations to study MCSP are not limited to efficient hardware design. Theoretical
results about MCSP have striking implications in many different areas of computer science: com-
plexity, cryptography, and learning theory. Intuitively, MCSP plays such a central role because
it is a basic meta-computational problem — the input itself contains some form of execution
instructions. Now, MCSP is exactly such a meta-problem, where the “instructions” are a (maxi-
mally explicit) look-up table and the task at hand is to determine if this can be compressed into a
non-trivial circuit. So, studying MCSP entails determining the complexity of determining complex-
ity itself. To the extent that results about complexity theory are constructive, they will somehow
involve MCSP.

Moreover, the promise version of MCSP is essential to computational learning theory: If we
would want to know what hidden Boolean function produced a certain set of n-dimensional train-
ing samples, we can—in accordance with Occam’s razor—ask for the minimum circuit which co-
incides with all training samples. Further, the problems associated with cryptography all hinge
on distinguishing between truly random and pseudo-random objects. An efficient MCSP algorithm
could defeat any pseudo-random object, because such objects must have descriptions in terms of
small circuits but there are many more random strings than small circuits. Therefore, resolving
the complexity of MCSP is a core open problem across many areas of computer science.

To begin, it is easy to see that MCSP is in NP. Namely, we can define a certificate as some
proposed circuit C of size at most s, and verify in polynomial time whether C computes each entry
of the truth table correctly. Because MCSP for general circuits seems to require brute-force search,
it is reasonable to conjecture that it is NP-complete. The theory of NP-completeness has been
enormously successful in explaining why many problems seem intractable. But it has failed so far
to explain MCSP — indeed, we have formal evidence that a “simple” proof of the statement “MCSP
is NP-hard” will be extremely difficult to obtain.

In a landmark paper titled “Circuit Minimization Problem,” Valentine Kabanets and Jin-Yi
Cai addressed the difficulty of showing MCSP to be NP-hard [KC00]. They are showed that if
there is a “natural” many-one reduction R from SAT to MCSP, then we can extract breakthrough
complexity lower bounds that seem far out of reach from modern complexity theory. On the other
hand, they demonstrate similarly dramatic (but seemingly unlikely) consequences of MCSP ∈ P.
Thus, resolving the complexity of MCSP in either direction — easy or hard — seems very difficult.

In this tutorial-level review, we focus on the hardness of proving NP-hardness of MCSP. We
“spell out” all the details of the proof in their paper, giving an approachable and self-contained
presentation. We also give examples that demonstrate how “natural” the reductions studied really
are — the vast majority of NP-hardness proofs use this sort of reduction, and even parameterized
problems are easily shown to be natural in the sense of [KC00]. These notes should make subsequent
work on the hardness ofNP-hardness forMCSP readily accessible by providing a detailed exposition
of the initial result. Furthermore, we will also survey a chain of work which examine the NP-
hardness of MCSP via other “reducibilities.” To summarize,

• On the (Non) NP-hardness of MCSP of Computing Circuit Complexity [MW17]:
in this paper, Murray and Williams proved that MCSP is not NP-hard under local reduction
from PARITY. The locality here means that the reduction only acts on “part” of the input,
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rather than the entire input. Another notable result in this paper is that if MCSP is NP-
hard under polynomial time reduction, then strong implications would follow, such as EXP ̸=
ZPP.

• Circuit Lower-Bounds from NP-hardness of MCSP [SS20]: in this paper, Saks and
Santhanam showed that a strong circuit lower-bound E ̸⊆ SIZE(poly) would follow if MCSP
is NP-hard under parametric honest and natural Turing reduction. Informally speaking,
“parametric honest” here means that the queries made by the reduction on some input have
parameters lower-bounded by some polynomial of the input length (i.e. we are promised
to have a “large” enough parameter in each query). And “natural” here means that the
parameter made by a query on some input depends on the length of the input only.

We will first give some definitions required to understand the main results and key theorems
of the paper in Section 2. Section 3 introduces some main consequences of MCSP being NP-hard
under “natural” reductions. Finally, we conclude the review by giving remarks and directions for
further research on this topic in Section 4.

Acknowledgment: We thank Prof. Mark Bun and Ph.D. student Ludmila Glinskih for the
constructive feedback and comments on the first draft of this paper. We also thank Prof. Steve
Homer and Ph.D. student Tim Jackman for the fruitful discussion and suggestions on the second
draft. TO DO: finish the rest.

2 Preliminaries

We begin by introducing some useful background, including the definition of some complexity
classes, the concept of natural reductions and pseudorandomness. We assume the reader is familiar
with basic complexity theory and circuits.

2.1 Complexity Classes

Here, we provide definitions of and basic relationships between some less-common complexity classes
used by [KC00]. For more details and a full discussion, refer to the excellent textbook by Arora
and Barak [AB09] on which we based our definitions and notations used throughout the paper.

Definition 1. The class of languages in deterministic, sub-exponential time is SUBEXP :=⋂
ϵ>0DTIME(2n

ϵ
).

SUBEXP is not empty, even though it is defined as an infimum over complexity classes. This
is because a language might be decided by a different TM for every ε > 0.

Definition 2. The class QP of languages decided by a TM in quasi-polynomial time defined by

QP := DTIME(npolylog(n)) =
⋃
c>1

DTIME(2log
c n) =

⋃
c>1

DTIME(nlogc n)
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We obtain the last equality since 2(logn)
c+1

= (2logn)log
c n = nlogc n. Note that QP contains P

since polylog(n) ∈ Ω(1). Also, SUBEXP contains QP since for every ε > 0 and c > 1 holds that
exp(logc n) ∈ o(exp(nε)).1

Definition 3. The class exponential time with linear exponent is defined as E := DTIME(2O(n)).

Since logc n ∈ O(n) for any c > 0, we obtain that QP ⊆ E. Finally, we introduce infinitely-often
simulations trough a modifier to a complexity class C.

Definition 4. A language L belongs to the class i.o. C if there is a language A ∈ C such that A
and L agree on infinitely many input lengths, i.e.

|{n ∈ N | ∀x ∈ {0, 1}n A(x) = L(x) }| =∞

By definition, C is contained in i.o. C.

2.2 Natural Reductions

Let us now introduce the notion of a natural reduction. Intuitively, a many-one polynomial-time
reduction is natural if its output size depends only on the input size. Formally, we define it as
follows.

Definition 5 (Natural Reduction). Assume we are given two languages A and B, where B describes
the decision version of a search problem, meaning its instances are of the kind ⟨y, s⟩ ∈ B where
s ∈ N is a numerical parameter. A many-one reduction R = ⟨RI , RP ⟩ from A to B, whereas RI

maps to instances y of the underlying search problem and RP to the parameters s, is called natural
if for all instances x of A holds that

• PTIME-honesty : there exists a c ∈ R+ such that |x|1/c ≤ |RI(x)| ≤ |x|c, meaning RI does
not suddenly grow or shrink, and

• Parameter-uniform: RP depends only on the length of the instance x, i.e. there exists a
function f : N→ N such that RP (x) = f(|x|).

All NP-complete problems we are aware of seem to be complete under natural reductions.
This is nothing special for a polynomial-time reduction to an unparameterized problem, as we can
usually pad the reduct to conform to the specific length. However, so far we are not aware of any
parameterized problem, which is NP-complete under general many-one reductions but not under a
natural reduction. To illustrate, we provide a reduction from SAT to kOV and show how it applies
to the definition of Natural Reduction.

1To analyze the relationship of exponentials, the following proves useful: For functions f, g : N+ → N+ holds
2f(n) ∈ o(2g(n)) if and only if g(n)−f(n) → ∞ for n → ∞. This is easily seen by using the limit definition of Landau
symbols as

f(n) ∈ o(g(n)) ⇐⇒ 0 = lim
n→∞

2f(n)

2g(n)
= lim

n→∞
exp(f(n)− g(n)) ⇐⇒ lim

n→∞
f(n)− g(n) = −∞ .
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Example 6. We reduce from SAT to kOV.2 Given a SAT-formula ϕ(x1, x2, . . . , xk) on d clauses,
we first define vectors v(a) ∈ {0, 1}d for any literal a ∈ {x1, x̄1, . . . , xk, x̄k} where v(a)ℓ = 0 if
the ℓ-th clause contains a and v(a)ℓ = 1, otherwise. We can then define R(ϕ) := ⟨V, k⟩ where
V = (V 1, . . . , V k) and V i = (v(xi), v(x̄i)). Clearly, literals a

i ∈ {xi, x̄i} obey

d∑
ℓ=1

v(a1)ℓ · v(a2)ℓ · · · v(ak)ℓ = 0

if and only if for all clauses ℓ ∈ [d] exist a variable i ∈ [k] such that v(ai)ℓ = 0 or, equivalently,
such that setting xi = 1 if ai = xi and xi = 0 if ai = x̄i satisfies the ℓ-th clause. As such, R indeed
reduces from SAT to kOV.

In order to show that the reduction R is also natural, we first need to fix a proper encoding
of SAT-formulae. Namely, a formula ϕ(x1, . . . , xk) is represented as a sequence of clauses, each
of which containing a set of indices corresponding to the variables occurring in that clause. The
maximum number of used variables is therefore restricted by the formula’s length, and we may
even assume k log k = Θ(|ϕ|) without loss of generality.

• PTIME-honesty: Our reduction satisfies |RI(ϕ)| = |V| = 2d · k where k log k = Θ(|ϕ|).
However, d = O(|ϕ|) is the only necessary relationship between the number of clauses and
the size of ϕ. To guarantee that the reduction is always PTIME-honest, we thus need to
artificially pad V with |ϕ| blocks of all-one vectors (which do not affect the solution). Then,
|RI(ϕ)| = k ·Θ(|ϕ|) which satisfies |ϕ|1/c ≤ |RI(ϕ)| ≤ |ϕ|c for every c > 0.

• Parameter-uniform: RP (ϕ) = k clearly depends only on the size of ϕ as k log k = Θ(|ϕ|).

Finally, we conclude this example with an example of “naturalizing” an unnatural reduction.

Example 7. We reduce from Partition3 to SubsetSum :4

R({a1, . . . , an}) :=
{
⟨{2, 4, 8}, 7⟩ if

∑n
i=1 ai ≡2 1

⟨{a1, . . . , an}, 12
∑n

i=1 ai⟩ otherwise .

While this reduction is correct (i.e. if
∑n

i=1 ai is congruent to 1 modulo 2, it is impossible to divide
the set into two partitions of equal sum; the tuple ⟨{2, 4, 8}, 7⟩ is a no-instance to SubsetSum) and
can be carried out in polynomial time, it is not natural. First, the output size does not strictly
depend on the input size as, in the case of an obvious no-instance to Partition, we map directly to
a no-instance of SubsetSum of constant size. Second, the numerical parameter s is not a function
of the input size only. For example, the two instances {1, . . . , 1} (n-times) and {2n} are of equal
size, but have totally different sums. With a little more care, we can, however, make this a natural
reduction: Let

R′({a1, . . . , an}) := ⟨{2a1, . . . , 2an, r, 2σ+2⟩ where σ := size({a1, . . . , an})
and r := 2σ+2 −

∑n
i=1 ai .

2A tuple ⟨V, k⟩ where k ∈ N and V is a sequence of k blocks V i of n vectors vi1, . . . v
i
n ∈ Rd each, is an instance of

k-orthogonal vectors (kOV) if there exists a vector vi ∈ V i from each block such that
∑d

ℓ=1 v
1
ℓ · v2ℓ · · · vkℓ = 0.

3The partition problem asks, given a multiset of positive integers {a1, . . . , an}, whether there exists a partition
(S, T ) of {1, . . . , n} such that

∑
i∈S ai =

∑
i∈T ai.

4Subset sum asks for an instance ⟨A, s⟩ of a multiset of positive integers A = {a1, . . . , an} and an integer s, whether
there exists a subset S ⊆ {1, . . . , n} such that s =

∑
i∈S ai.
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Now, the numerical parameter s is obviously only a function in the input size σ. Regarding
correctness, first note that 2σ+2 >

∑n
i=1 2ai. This implies that any subset with a sum of 2σ+2

necessarily contains r and thus 2σ+2 = r +
∑

i∈S 2ai ⇐⇒ 1
2

∑n
i=1 ai =

∑
i∈S ai where S is the

original subset without r.

2.3 Pseudorandomness

Broadly speaking, given a short string of truly random bits, a pseudorandom generator (PRG)
tries to enlarge this sequence to obtain a string with “artificial” randomness which is defined as
computationally indistinguishable from a truly random string by any efficient algorithm called
the distinguisher. To be more specific, indistinguishability here means the probability that the
distinguisher can detect the difference is negligible. For full discussion and formalization on this
topic, see Goldreich’s Primer on PRGs [Gol10].

In this tutorial, we formulate the construction of PRGs in terms of truth tables and circuit
complexity by adopting the notations by Murray and Williams [MW18] as follows. Let x1, . . . , x2ℓ
be the ℓ-bit strings in lexicographically order and C be a circuit of ℓ input entries, define tt(C) :=

C(x1) · · ·C(x2ℓ) to be the truth table of C, where tt(C) ∈ {0, 1}2ℓ . For every string y, let 2ℓ be
the smallest power of 2 such that 2ℓ ≥ |y| + 1. We define the circuit complexity of y, denoted as

CC(y), to be the circuit complexity of the ℓ-input function defined by the truth table y102
ℓ−|y|−1.

Thus, we can formulate the definition of pseudorandom generators via the following Theorem by
Umans [Uma03].

Theorem 8. There is a universal constant g and a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such
that, for all s and Y satisfying CC(Y ) ≥ sg, and for all circuit C of size s it holds that∣∣∣∣ Pr

x∈{0,1}g log |y|
[C(G(Y, x)) = 1]− Pr

x∈{0,1}s
[C(x) = 1]

∣∣∣∣ < 1/s

The existence of certain pseudorandom generators would allow us to derandomize algorithms
in BPP. The basic idea is to replace the randomness used in a probabilistic algorithm with
pseudorandomness generated from a sufficiently small source of true randomness. We then try
the algorithm on the pseudorandomness generated from each choice in this small source, while the
assumption guarantees that it cannot distinguish it from true randomness. If the stretch function
is large enough, this leads to an efficient derandomization.

3 Main Focus

3.1 MCSP and NP-completeness via Natural Many-One Reductions

To begin with, let us make it clear that we do not know whether MCSP is NP-hard. Yet, the
proof’s difficulty can be made explicit by looking at some implications it has for circuit complexity
and BPP, which are both beyond currently known techniques. In other words, proving the NP-
hardness of MCSP can be shown to be as challenging as finding proofs for other long-standing
problems known to be difficult.

Now, let us look at the first key theorem regarding an implication for circuit complexity if MCSP
is NP-hard under a natural reduction.
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sat formulae

unsat formulae

SAT

easy instances

hard instances

MCSP

R = (RI , RP )

R = (RI , RP )

Figure 1: The mapping from SAT to MCSP given by the natural reduction R

Theorem 9. (Theorem 15.1 in [KC00]) If MCSP is NP-hard under a natural reduction from
SAT, then E contains a family of Boolean functions fk not in i.o.P/poly, i.e., of superpolynomial
circuit complexity.

Before we move on to the proof, we provide some classic lemmata related to basic complexity
classes and circuit sizes that are useful for establishing this result. The proofs for these are fairly
simple and we put them under Appendix A for the readers reference.

Lemma 10. QPQP ⊆ QP.

Lemma 11. If NP ⊆ QP then PH ⊆ QP.

Lemma 12. QPΣp
k contains a language that does not belong to i.o.P/poly for some k ∈ N.

Lemma 13. There are O(s3s) different circuits of size s. In particular, there are

1. npolylog(n) circuits of size logc n for any c > 0 and

2. O(2n
2ε
) circuits of size nε for any ε > 0.

We now have enough tools to prove Theorem 9. We remind ourselves of the statement to prove:
If there is a natural polynomial-time reduction from SAT to MCSP, then E contains a family of
Boolean functions fk of superpolynomial circuit size.

Proof (Theorem 9). We separate the proof into two cases.

• Case 1: NP ⊆ QP

Applying Lemma 10 and Lemma 11 to this assumption yields QPPH ⊆ QPQP ⊆ QP ⊆ E.
Lemma 12 shows that E also contains a language of superpolynomial circuit complexity (i.o.).
Hence, E ̸⊆ i.o.P/poly

• Case 2: NP ̸⊆ QP

While it is (computationally) trivial to choose a no-instance for SAT of any given size, it is
not clear how to do so for MCSP. The key idea for this part is, therefore, to use the natural
reduction R to obtain hard instances for MCSP, i.e., a family of truthtables that cannot be
represented by circuits of polynomial size, see Figure 1 for an illustration.
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We start out by picking a quite arbitrary infinite set U of unsatisfiable CNF-formulae, say,
U := {ϕn | n ∈ N } where

ϕn(x1, . . . , xn) := (x1 ∧ x̄1) ∧ (x3 ∧ x4 ∧ · · · · · · · · · ∧ xn) .

By construction, |ϕn| ∈ Θ(n). Now, based on this, we want to apply R to define our hard
language. For each k ∈ N, let Tk be the truthtable in k-variables such that ⟨Tk, sn⟩ = R(ϕn)
and n is minimal. Here, sn represents the size parameter that the RP part of R (see Definition
5) produces on ϕn. If no ϕn maps to a truthtable in k variables, simply let Tk ≡ 0.

We know that R is natural, which in particular implies n1/c ≤ |Tk| ≤ nc (with an appropriate
c ∈ N) for every ϕn mapping to a truthtable Tk. Since |Tk| = 2k, this is equivalent to
log

(
n1/c

)
≤ k ≤ log(nc) implying k = Θ(log n) or n = 2Θ(k). Now, we proceed with defining

our hard language
L := {x ∈ {0, 1}k | k ∈ N, Tk(x) = 1 }

to obtain the following.

(i) L ∈ E: We show how to construct a machine to decide L in time 2O(k). Given an input
x ∈ {0, 1}k, we first need to know which ϕn maps to Tk under R.

To each candidate ϕn for n ∈ N, we apply R and obtain ⟨Tk′ , sn⟩ = R(ϕn). We then
compare whether k = k′ and if so, output Tk(x). The reduction R runs in polynomial
time, say na for an a ∈ N. By the above construction, n = 2Θ(k), which means we only
need to check 2Θ(k) candidates whereas each check runs in time at most na = (2Θ(k))a =
2Θ(k). If no candidate maps to a truthtable on k variables, we know that Tk ≡ 0 by
definition and reject since Tk(x) = 0 ̸= 1. Overall, the decision procedure took time
2O(k), proving that L ∈ E. (TO DO: turn this into pseudocode)

(ii) L ̸∈ P/poly: We start by showing that the parameter sn produced by R is super-
polynomial in log n. Let us assume to the contrary that it is bounded by a polyno-
mial sn ≤ logb n for any b ∈ N. Now, this yields a simple strategy to decide SAT
in quasi-polynomial time: Given a CNF-formula ϕ of size n, we apply R to obtain
⟨Tk′ , sn⟩ := R(ϕ) with sn ≤ logb n. We will decide the membership of this instance to
MSCP instead of solving the original satisfiability problem. By Lemma 13, there are
at most npolylog(n) circuits of size sn. We enumerate these and check for each circuit
whether it represents Tk′ . Note that testing whether a circuit C of size sn represents
Tk′ only requires us to do 2k

′
evaluations of C, each of which take time O(sn). Overall,

we can decide the membership to MCSP, and as such the satisfiability of ϕ, in quasi-
polynomial time. (TO DO: turn this into pseudocode) which implies that SAT ∈ QP.
However, SAT is an NP-complete problem, and thus, we have NP ⊆ QP contradicting
our assumption that NP ̸⊆ QP.

We, therefore, established that sn is superpolynomial in log n. At the same time, R is a
natural reduction, meaning that sn is the same for every input of size n. In particular,
we obtain that since we set ⟨Tk, sn⟩ = R(ϕn), the parameter sn is superpolynomial in
log n = Θ(k). As ϕn is a no-instance to SAT, we conclude that Tk cannot be represented
by a polynomial-size circuit family. In other words, L ̸∈ P/poly. Being more careful, we
furthermore obtain that any polynomial-size circuit family can only agree with Tk on
finitely many input lengths. The reason for this is that sn ∈ ω(poly(k)) guarantees by

8



definition the existence of a k0 ∈ N such that poly(k) < sn for all k > k0. We conclude
that L ̸∈ i.o.P/poly.

With the same techniques but a different bound on the circuit size, we can obtain a very similar
statement. The only additional ingredient is the exponential-time hypothesis, which is, however,
widely assumed to be true [IP99]. The claim is that NP ̸⊆ SUBEXP, or equivalently, that SAT
requires exponential time.

Theorem 14. (Theorem 15.2 in [KC00]) If MCSP is NP-hard under a natural reduction from
SAT and NP ̸⊆ SUBEXP, then E contains a family of Boolean functions fk of circuit complexity
2Ω(k) (i.o.)

Proof. This proof follows similarly to the previous statement. In fact, let the language L and pairs
⟨Tk, sn⟩ be defined as in the proof for Theorem 9. The difference is that here, we show that a more
restrictive bound on sn contradicts the stronger assumption NP ⊆ SUBEXP as this bound would
allow SAT to be solved in subexponential time.

To this end, assume that sn ∈ O(nε) for any ε > 0. We pursue the same strategy to decide the
satisfiability of a CNF formula ϕ: Using the reduction R, map it to ⟨Tk′ , sn⟩ := R(ϕ). Lemma 13
shows that there are O(2n

2ε
) circuits of size at most sn. Enumerating all such circuits (1) and

checking whether they represent Tk′ by evaluating (3) all assignments (2) therefore takes time

O(2n
2ε
)︸ ︷︷ ︸

(1)

·O(2k
′
)︸ ︷︷ ︸

(2)

·O(sn)︸ ︷︷ ︸
(3)

= O(2n
2ε
) · poly(n) ·O(nε) = O(2n

3ε
) .

So, if we assume to the contrary that sn ∈ O(nε) for every ε > 0, we also obtain that we can
decide the satisfiability of ϕ in time O(2n

3ε
) for every ε, i.e. in subexponential time. However,

SAT ∈ SUBEXP contradicts the assumption NP ⊆ SUBEXP.
We can conclude that instead, sn ∈ Ω(nε) for an ε > 0. With n = 2Θ(k), this shows that

sn ∈ Ω(2εΘ(k)) = 2Ω(k). Now, with the same argument as above, we know that L can only be
decided by a 2Ω(k) size circuit family. We have already proven that L ⊆ E, which concludes the
proof.

Now, we will look at the implications for BPP when NP-hard under a natural reduction from
SAT. By appropriate settings of the parameters for Umans’ generator (Theorem 8), we obtain the
following conditional derandomizations of BPP. Note that Umans’ generator was not available in
2001 — Kabanets and Cai used different PRGs for different settings of the hardness parameter. This
emphasizes that the particular hardness to randomness tradeoff used to obtain derandomization
from NP-hardness of MCSP was not essential to the ideas of [KC00]. Any black-box construction
of PRGs from hardness in E would work equally well here.

Theorem 15 ([KC00]). If MCSP is NP-hard under a natural reduction from SAT, then

1. BPP ⊆ SUBEXP (i.o.), and

2. BPP = P, unless NP ⊆ SUBEXP.
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That is, if MCSP is NP-hard under a natural reduction from SAT, then every problem in BPP
can be efficiently solved. Now, we believe that P = BPP, as most algorithms in BPP surrender
to derandomization. However, it is known that showing BPP = P entails proving the existence of
certain pseudorandom generators, which in turn would prove BPP = P all along [Gol11], a result
which seems to be challenging in its own right. Therefore, proving the NP-hardness of MCSP is as
difficult as finding a constructive way for derandomization.

Finally, taking everything together, we obtain a nice corollary as follows.

Corollary 16. If MCSP is NP-hard under a natural reduction from SAT, then BPP ⊊ E

Proof. We first show that the inclusion SUBEXP ⊆ E is strict: By definition, SUBEXP is
the intersection of DTIME(2n

ε
) for all ε > 0. In particular, SUBEXP ⊆ DTIME(2

√
n).

Now, the deterministic time-hierarchy theorem proves that DTIME(2
√
n) ⊊ DTIME(2n) since

2
√
n log

(
2
√
n
)
= 2

√
n log

√
n ∈ o(2n) We conclude that SUBEXP ⊆ DTIME(2

√
n) ⊊ E Further-

more, from Theorem 15, we know that if MCSP is NP-hard under a natural reduction from SAT,
then BPP ⊆ SUBEXP. Combining both gives us BPP ⊆ SUBEXP ⊊ E.

3.2 MCSP and NP-Completeness via Turing Reduction

A natural problem rooted from our discussion in the previous section is whether we can derive
other strong circuit lower-bounds under the assumption that some seemingly hard reducibility
from some NP-hard problem to MCSP exists. Indeed, Saks and Santhanam [SS20] have shown
that E ̸⊆ SIZE(poly) if a parametric Turing Reduction from SAT to MCSP exists.

Broadly speaking, an oracle Turing machine M is a parametric Turing Reduction from SAT to
MCSP if M runs in polynomial time and every query made by M has a “large enough” parameter.
Specifically, for some input x ∈ {0, 1}∗, the queries that M makes on x has a parameter of size at
least |x|ϵ, where ϵ is a positive constant. Before we move on to the key theorem for this section, we
provide a “tool”rooted from the work of Gutfreund, Shaltiel, and Ta-Shma [GSTS05] that plays
the critical role in the proof for the theorem.

Lemma 17. (Lemma 3.1 in [GSTS05]) If P ̸= NP, then there exists a polynomial time algorithm
R such that on input n in unary and a description of a deterministic machine A that tries to decide
SAT in polynomial time, R outputs three instances whose length is either n or poly(na), for some
constant a, such that A fails on at least one of these three instances.

Now, let us look at the key theorem regarding an implication for circuit complexity if MCSP
is NP-hard under a parametric Turing reduction. We are not going to provide the full proof for
the theorem, but rather, a sketch that helps the readers come up with the full detailed solution on
their own using the given references and preliminaries.

Theorem 18. (Theorem 8 in [SS20]) If MCSP is NP-hard under a Parametric Honest Turing
reduction from SAT, then E ̸⊆ SIZE(poly).

Proof. (sketch) Assume that MCSP is NP-hard under a parametric honest Turing reduction from
SAT and let M be the polynomial time oracle Turing machine that implements such reduction. It is
useful to remind ourselves that by the definition of Turing reduction, M is a machine that decides
SAT by making queries to the embedded oracle machine for MCSP.
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Now, we will construct a polynomial time machine A that aims to decide SAT efficiently by
simulating M . Namely, on input x ∈ {0, 1}∗, an instance for SAT, the machine A performs the
simulation of M on x as follows

Algorithm 1 A(x) :

1: for all queries y made by M on the MCSP-oracle do
2: A only answers yes
3: end for
4: if M accepts then
5: accept
6: else
7: reject
8: end if

We can assume, w.l.o.g., each query y has length of a power of 2 because it must represent a
truth table to be a valid query for the MCSP oracle. Note that, one can argue that the function
described by this truth table y must have O(log n) variables because M is a polynomial-time Turing
reduction which means that the size of the query cannot be too big. Lastly, since M is a parametric
honest reduction, the query must have a parameter of at least |x|ϵ = nϵ, for some ϵ > 0.

It is easy to see that A must run in polynomial time since M runs in polynomial time according
to our assumption. Now, we consider two cases

• Case 1: P = NP

If A solves SAT correctly, then P = NP. Thus, by a proof by contradiction using Karp-Lipton
theorem and the deterministic time hierarchy theorem, one can deduce to E ̸⊆ SIZE(poly).

• Case 2: P ̸= NP

If P ̸= NP, then it must be the case that A fails to decide SAT on infinitely many instances.
By Lemma 17, we have a polynomial time machine R such that on input 1n and the description
of A, R produces three instances x1, x2, x3 where each has length of either n or na, for some
constant a and for infinitely many n, such that A fails on at least one of them. We now
construct a machine T that produces a hard truth-table, using M as a subroutine on input
x1, x2, x3, as follows

Algorithm 2 T (x1, x2, x3) :

1: for i = 1, 2, 3 do
2: Qi ← all queries y’s of M(xi)
3: end for
4: Y ← Q1 +Q2 +Q3

5: return Y

It is easy to see that |Y | = poly(n) and T runs in time poly(n) = 2O(logn) which implies
Y ∈ E. Observe that, by Lemma 17, there must be a query y∗ wrongly answered by A on
the honest parameter nϵ which means that the function described by y∗, having O(log n)
variables, requires a circuit of some size strictly greater than nϵ which is superpolynomial in
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terms of O(log n) which implies y∗ ̸∈ SIZE(poly). Finally, since y∗ is a substring of Y by the
procedure T , it must be the case that Y ̸∈ SIZE(poly) which implies E ̸⊆ SIZE(poly).

With a more sophisticated mathematical analysis which relies on robustness of a complexity class
C, Saks and Santhanam managed to prove the same circuit lower-bound with a weaker assumption.
Namely, the assumption of a polynomial time Natural Turing reduction M from SAT to MCSP.
Specifically, following a similar vein as Natural Reduction in Definition 5 for some input x ∈ {0, 1}∗,
M is Natural if the queries that M makes on x has a parameter depending only on |x|, and it is
the same for all queries made on any input of the same given length.

Theorem 19. (Theorem 10 in [SS20]) If MCSP is NP-hard under a Natural Turing reduction
from SAT, then E ̸⊆ SIZE(poly).

Even though the proof for this theorem requires much more mathematical work compared to
Theorem 18, the general framework of having full control over the reduction to efficiently produce
hard instances using Lemma 17 as a tool is similar. Therefore, we refer the readers to the original
paper by Saks and Santhanam for full details and discussion on how the whole proof is conducted.
Here, we will provide some quick ideas on how it works as a starting point for the readers

• We construct two algorithms for SAT, decision algorithm M1 and search algorithm M2 where
both algorithms partially do brute-force searching for the circuit. From here, we aim to show
that the brute-force search for circuits works well enough to imply the separation or that
there are intervals where the queried functions require large circuits which should also imply
the separation.

• Specifically, it is helpful to use the fact that SAT is paddable so that we can have control over
the reduction parameter. We have two cases.

– If the reduction parameter is small, then the exact exponential time algorithm M1 can
guess and verify all circuits for all MCSP queries.

– If the reduction parameter is large, then the algorithm M2 can try to use the Search-to-
Decision reduction to find a satisfying assignment for a SAT instance. If M2 fails, then
we can apply the same technique as in Theorem 18 to find witnessing counter-examples
whose circuit sizes are large.

3.3 Non NP-Hardness of MCSP via Local Reductions

We would like to note that our previous discussion in the last two sections does not imply that
natural reductions from SAT to MCSP does not exist; they are merely just hard to obtain at the
current state-of-the-art. Thus, a natural question to ask is which would be a candidate reduction
with more potential or which could not be a candidate at all. In one of their breakthroughs,
Murray and Williams [MW17] proved that local reductions cannot be used to show NP-hardness
of MCSP. Namely, a local reduction from PARITY, a simple and tractable language, to MCSP which
implies that we won’t be able to locally reduce any other NP-hard language to MCSP. Here, local
reduction means that the reduction R only acts on a certain part of the input string instead of the
entire string and thus the running time of the reduction is sub-linear in terms of the input length.

12



Specifically, let t : N → N and t(n) be some n1−ϵ for some ϵ > 0, then we define a local reduction
as follows

Definition 20. (Definition 1.1 in [MW17]) A local reduction from a language L to L′ is an algorithm
R : Σ∗ × Σ∗ → {0, 1, ∗} which runs in time t(n) such that for all x ∈ Σ∗ and for some constant
c ≥ 1, the following conditions hold.

• Locality: ∃ℓx ≤ |x|c + c such that R(x, i) ∈ {0, 1} for all i ≤ ℓx, and R(x, i) = ∗ for all i > ℓx.
Furthermore, x ∈ L ⇐⇒ R(x, 1) ·R(x, 2) · · ·R(x, ℓx) ∈ L′.

• Sub-linear Time Honesty: R(x, i) has random access to x and runs in O(t(|x|)) time for all
i ∈ {0, 1}⌈2c log2 |x|⌉.

We will discuss the ideas and intuition of the proof for the following Theorem.

Theorem 21. (Theorem 1.3 in [MW17]) For any δ < 1/2, there is no TIME(nδ) (local) reduction
from PARITY to MCSP.

Specifically, the proof can be broken down to the following three parts

Naturalizing the Local Reduction via the paddability of PARITY. We first observe that if
there exists a reduction from PARITY to MCSP, then it can be made natural with the cost of some
extra running time, namely

Claim 22. (Claim 3.3 in [MW17]) If there exists a TIME(t(n)) reduction from PARITY to MCSP,
then there exists a TIME(t(n) log2(n)) natural reduction (as in Definition 5) from PARITY to MCSP
and the size parameter sn ∈ Õ(t(n)).

The existence of such naturalization relies on the fact that PARITY is a paddable language.
Specifically, say we have a length-n instance x of PARITY, then if we create another instance x′

by padding n 0’s, the parity of x′ is still the same as the parity of x and one can show that a
reduction R′ that runs R on x′ maintains the correctness and furthermore, the size parameter s2n
of R′ becomes a function that only relies on the size of x′ which makes R′ natural by Definition 5.

Upper-bounding the size parameter of the Naturalized Reduction. Now, we will discuss
the argument of the upper bound of the size parameter of R′. We consider a procedure f that first
computes the string z = 0n then runs R′ on z. One can observe that since z is a trivial no-instance
of PARITY, the computation of R′ can speed up in the sense that R′ no longer needs to worry about
the content of the bits in the input string and can only focus on the indices of the bits to maintain
locality. Since R′ can be computed in TIME(t(n) log2(n)), one can now argue that the size of the
circuit computing f is at most Õ(t(n)) owning to the speed-up (TO DO: clarify the speed-up trick
more) and therefore the circuit computing the truth table of f has size also at most Õ(t(n)) via
the following Lemma which completes the proof of Claim 22.

Lemma 23. [Wil16] There is a universal constant c > 1 such that for any binary string T and
any substring S of T , the following inequality holds

CC(fS) ≤ CC(fT ) + c log |T |
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Constructing a depth-3 circuit computing PARITY. Recall that z = 0n is the trivial no-
instance of PARITY which means that the tuple ⟨tt(f), sn⟩ is a no-instance of MCSP implying sn
is strictly less than Õ(t(n)), where sn fixed for all instances of length-n by the naturalness of R′.
Upon establishing such upper-bound on the circuit size of a witness for R′, we can take advantage of
it to build a depth-3 circuit computing PARITY which contradicts Hastad’s Theorem which states
that PARITY cannot be computed by constant-depth circuits [Has86]. (TO DO: give more details
on how each level of the circuit looks like and potentially a picture)

For full details on how all of the introduced steps were done in details, we refer the readers to
the actual paper by Murray and Williams.

4 Conclusion and Open Problems

To summarize, the results shown in “Circuit Minimization Problem” by Kabanets and Cai nei-
ther give evidence against the NP-hardness of MCSP nor refute the conjecture that MCSP ∈ P.
Instead, they explain how establishing such proofs is difficult. First, even though we expect that
MCSP cannot be efficiently solved, showing its NP-hardness under natural reduction entails strong
statements about circuit complexity, which in turn imply the existence of certain pseudorandom
generators. Both of which are known to be difficult to obtain. On the other hand, it seems likely
thatMCSP is not contained in P. This is mainly becauseMCSP being efficiently solvable contradicts
the existence of one-way functions, which is a widely held belief in cryptography.

Our research is, therefore, taking the direction of showing the hardness of MCSP, which is
a crucial step in obtaining the soundness of this cryptographic assumption. Besides [SS20] and
[MW17], there has been a long sequence of other similar work ([HP15], [AHK17], [AH19]) which
tackles the results given in Section 3.1 to demonstrate further evidence of the difficulty of showing
NP-hardness of MCSP. However, researchers have managed to prove that some variants of MCSP
are NP-complete. Namely, DNF-MCSP [Mas79], MCSP for OR− AND−MOD Circuits [HOS18],
MCSP for multi-output functions [ILO20], and MCSP for partial functions and constant depth
formulae [Ila20] are now known to be NP-complete. Furthermore, some theorists have been trying
to prove that MCSP is NP-intermediate, which, while still implying a separation of NP from P,
avoids some of the hard ramifications we have seen for NP-completeness.

To wrap up our tutorial, we would like to provide a list of interesting open problems in this line
of work TO DO: write more open problems to the list

• Can we apply a similar proof framework and technique as in [KC00] and [SS20] but for other
types of reduction, i.e. truth-table reduction, to obtain some circuit lower-bounds? How
about un-restricted many-one or Turing reductions as mentioned at the end of [SS20]?

• Recall in Section 3.2 that one of the key parts of the proof of Theorem 18 is to use the
SAT-refuter under the assumption that P ̸= NP [GSTS05] as a subroutine to construct
hard instances to conclude the circuit lower-bound. Recently, Lijie Chen et al. [CJSW22]
have generalized such refuter construction for other assumptions under a variety of other
complexity classes such as P ̸= PSPACE or BPP ̸= NEXP. So, can we use these refuters
to obtain other (circuit) lower-bounds?

• In [Ila20], the circuits under consideration were under DeMorgan’s Basis, so would a similar
result holds if we change the basis, e.g. XOR-gate is allowed? Furthermore, can we apply the

14



Reverse Gate Elimination technique that Rahul introduced to prove hardness of total MCSP,
starting with the DeMorgan’s Basis? If not, what are the barriers?
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A Appendix

In this section, we provide the proofs of the lemmata that were used to prove Theorem 9 for the
readers reference.

A.1 Proof of Lemma 10

Lemma 10 states that giving a quasi-polynomial time oracle access to a machine also running in
quasi-polynomial time does not make it more powerful. Namely, QPQP ⊆ QP.

Proof. Let M be a TM deciding a language L ∈ QPQP in quasi-polynomial time, say exp(logc n).
We show that carrying out the oracle computation instead of calling the oracle does still guarantee a
quasi-polynomial running time. To this end, let M ′ be the TM deciding the QP-oracle, say in time

exp
(
logc

′
m
)
. Now, any input to M ′ is at most of length m = exp(logc n). We therefore need time

at most exp(logc(exp(logc n))) = exp
(
logcc

′
n
)
for one oracle computation. At the same time, there

16



are at most exp(logc n) calls, resulting in a total running time bound of exp
(
logc(exp

(
logcc

′
n
)
)
)
=

exp
(
logc

2c′ n
)
, which is still quasi-polynomial.

A.2 Proof of Lemma 11

Lemma 11 states that if an NP problem can be deterministically solved in quasi-polynomial time,
then the polynomial hierarchy is contained in QP. Namely, if NP ⊆ QP, then PH ⊆ QP.

Proof. Recall that we can define PH in terms of oracles by

PH =
⋃
n>0

NPNP···NP︸ ︷︷ ︸
n times

.

We can use a straightforward induction over n to show that PH ⊆ QP. Note that the induction
basis is just the assumption. Furthermore, by the inductive hypothesis, we have that

NPNP···NP︸ ︷︷ ︸
n times

⊆ QP =⇒ NP

n times︷ ︸︸ ︷
NPNP···NP︸ ︷︷ ︸
n+1 times

⊆ NPQP .

Now, NPQP ⊆ QPQP ⊆ QP by Lemma 10 which concludes the proof.

A.3 Proof of Lemma 12

Lemma 12 states that QPΣp
k contains a language that does not belong to i.o.P/poly for some k ∈ N.

Proof. The proof follows a nonuniform diagonalization argument. We first define a language that
will be hard to compute for any polynomial-size circuit family: Let L′ be the language consisting

of tuples ⟨x, 1exp(log
3 n)⟩ with n := |x| such that C(x) = 1 where C is the lexicographically first

circuit of size exp
(
log3 n

)
which is not computed by any circuit of size exp

(
log2 n

)
. The existence of

such a circuit for sufficiently large n follows from a slightly more careful analysis of the nonuniform
hierarchy theorem (Theorem 6.22 in [AB09]).

Observe that can decide membership ⟨x, 1exp(log
3 n)⟩ ∈ L′ by a Σp

4-type machine. Specifically,
the circuit C computing x is the lexicographic first circuit of size exp

(
log3 n

)
which is not computed

by any circuit of size exp
(
log2 n

)
means that: there exists a circuit C whose size |C| ≤ exp

(
log3 n

)
such that for all C ′ <lex C, there exists a smaller circuit C ′′ whose size |C ′′| ≤ exp

(
log2 n

)
such

that C ′ ≡ C ′′ on all inputs z ∈ {0, 1}n. With a bit of care, one can reformulate this statement to
show that x ∈ L′ is equivalent to an expression of the ∃∀∃∀-form which deduces to the fact that
L′ ∈ Σp

4 and concludes Σp
4 ̸⊆ SIZE(poly) by definition of a member of L′ itself.

Finally, we define our language L of superpolynomial circuit complexity as the output of a
QPΣp

4 -machine T as defined above: Given an input x ∈ {0, 1}n, query the oracle for L′ with

⟨x, 1exp(log
3 n)⟩ and output its answer.

We constructed this language such that it is hard for a polynomial-size circuit to compute. To see
this, assume to the contrary that there is a na-size circuit family. However, since na ∈ o(exp

(
log2 n

)
)

and we particularly excluded any circuits of size less than exp
(
log2 n

)
, this is a contradiction.
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A.4 Proof of Lemma 13

Lemma 13 states that there are O(s3s) different circuits of some size s. In particular, if we substitute
s with npolylog(n) and nε, we obtain the following

1. npolylog(n) circuits of size logc n for any c > 0 and

2. O(2n
2ε
) circuits of size nε for any ε > 0.

Proof. In a circuit with s ∈ N many gates and inputs, each gate is connected to at most two out of
s gates and computes one of the functions ∧,∨,¬. This means there are at most 3 · s2 choices to
construct each gate and thus (3s2)s = O(s3s) choices to construct the whole circuit.

1. Setting s := logc n gives us

O((logc n)3 log
c n) = O(2(log

3c n)·(logc n)) = O(2log
4c n) = npolylog(n)

many ways to construct a circuit of size logc n, while

2. setting s := nε = 2ε logn yields O((2ε logn)n
ε
) = O(2n

2ε
) different circuits of size nε.
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