On Tightening The Bounds of Multiplexer

November 2025

Abstract
Given its nature — selecting a bit from a list of data bits based on an address encoded in binary — the
Multiplexing function (MUX) captures an essential form of computation: indirect addressing or memory
lookup. Despite its simple nature, proving tight lower and upper bounds for its circuit complexity has
remained open for decades. In this work, we revisit the complexity of the multiplexer function MUX and
provide two main contributions.

1. We improve the 2N — 2 lower bound (Paul, 1975) to 2N + log N via a more intricate application of
Gate Elimination (Section 3).

2. We revisit the 2N + O(V/N) upper bound (Klein & Patterson, 1980) and refine the construction
by giving exact summation formulas for our recursive constructions and providing a clean and

easy to analyze construction that helps provide better understanding on how MUX-function works
(Appendix B).

1 Introduction

1.1 Overview

Understanding the circuit complexity of natural Boolean functions is a fundamental pursuit in theoretical
computer science for over five decades. Among existing techniques, Gate Elimination — a robust method for
proving circuit lower bounds by analyzing the effects of input substitution — has emerged as one of the most
tractable and intuitive methods for proving circuit lower bounds. In particular, current known lower bounds
in the DeMorgan, Uz [Red73; Sch74; Zwi91; LRO1; IMO02], and By [Sch74; Sto77; DK11; FGHK16; LY22]
basis were proven via Gate Elimination. However, despite its appeal and the long-standing interest, progress
in proving strong lower bounds remains limited. To date, no super-linear lower bounds are known for general
Boolean circuit classes over different bases, and breaching this barrier via Gate Elimination alone remains
elusive [Weg87|. In this work, we consider the DeMorgan Basis: fan-in 2 AND, fan-in 2 OR, and fan-in
1 NOT gates. We consider the complexity measure which counts only the binary gates. The table below
summarizes the best known upper bound and lower bound of some explicit well-known Boolean functions
under our measurement.

Function(s) Lower Bound Upper Bound Source(s)
XOR 3(n—1) = 3n—1) [Sch74]
Multiplexer 2(n—1) 2n+ O(y/n) [Pau7h; KP80]
Sum Mod 4 dn — O(1) 5n — O(1) [Zwi9l]
Sum Mod 2* 4dn — O(1) n — o(n) [Zwi9l]
Well-Mixed 5n — o(n) poly [LRO1; IMO2]
Weighted Sum of Parities 5n — o(n) 5n + o(n) [AT11]

Table 1: Explicit Functions with Circuit Lower Bounds in the DeMorgan Basis

In the table, only XOR-function has a proven tight-bound, so attempting to tight the bounds for the other
candidates via Gate Elimination (or other known techniques) remains an interesting research direction. In
this work, we make progress towards the Multiplexter (MUX) defined below.

Definition. We define the multiplezer MUX,, : {0,1}" x {0,1}*" — {0,1} as follows. For all (a,z) where
a€{0,1}",x € {0,1}?", we have
MUX,,(a,) = 2(q)

where (q) is the (a + 1)-th bit of x (1-indexed) when a is interpreted as a base-2 number.

Throughout this paper, we will address aq,...a, as the address bits, and x1,...,xon as the data bits,
index the function with the number of address bits n, and set N = 2" as the number of data bits,. For
example, if n = 2, a = 01, and = = x1292324 = 0101, then (a) = 1, thus MUX,,(a,2) = 29 = 1. We show
the following lower bound for MUX,, which an improvement on Paul’s 2N — 2 lower bound [Pau75].

Main Theorem. Let C' be an optimal circuit computing MUX,,, then under the DeMorgan basis, free
negations, the size of C' is at least 2N + log N where N = 2".

In Appendix B, we provide a detailed analysis the best know upper-bound construction of MUX first
introduced by Klein and Patterson [KP80] that is asymptotically close to our lower bound and discuss the
feasibility of it being the optimal construction. In general, we now obtain

2N +log N < CC(MUX,,) < 2N + O(V'N), where N = 2"

1.2 Owur Technique

We first discuss Paul’s technique for showing the 2(N — 1) lower bound. The proof follows a standard gate
elimination framework that was used to show the 3(n—1) lower bound for XOR,,, the XOR-function on n-bits.
In particular, Schnorr analyzed the local structure at the bottom level of an optimal circuit computing XOR,,
in which some variable x; is fed into two different binary gates h, g, and without loss of generality, one can
argue h cannot be the output gate which means h is fed into a third binary gate k. Thus, there exists a
substitution of x; such that h, g,k are eliminated. Since restricting x; yields a circuit computing XOR,,_1,
i.e. XOR-function is downward self-reducible, one can inductively argue the 3(n — 1) lower bound.

Paul’s lower bound proof follows a similar idea, but the downward self-reducibility of MUX,, behaves dif-
ferently. Namely, when we restrict an address bit to obtain a circuit computing MUX,,_1, we lose half of the
current number of data bits. Thus, we cannot apply the downward self-reducibility of MUX-function directly
via restricting an address bit using Schnorr’s framework. Instead, we will restrict a data bit. However, the re-
sulting circuit after restricting a data bit does not compute MUX,,_1, and rather, a function that behaves like
MUX,, on every address except one that corresponds to the index of the data bit that was restricted. Thus, we
get around this issue by defining a class of function F = {f | f behaves like MUX on a set of addresses S C
{0,1}"}. Clearly, when S = {0,1}", then f = MUX,,. Thus, if we can obtain a lower bound for the class F,
we obtain a lower bound for MUX,,. With this observation, Paul’s argument says that at the bottom level of
an optimal circuit for f, a restriction on a data bit eliminates at least 2 gates, and the lower bound 2(N —1)
of MUX,, inductively follows. We recount Paul’s argument in Appendix A.

We observe that to obtain a better lower bound for MUX,,, we need to restrict an address bit because
the fact that half of the data bits become irrelevant to the circuit can do a lot more damage than just two
binary gates at a time. Let C' be an optimal circuit computing MUX,,, we first observe the local structure
of C around an address bit a; and the set of N/2 data bits that becomes irrelevant to the circuit after
substituting a; < b. Namely, we argue that a; and each of the N/2 data bits are fed to N/2 + 1 distinct
binary gates, as otherwise, we can exhibit an appropriate substitution that makes at least a; or one of the
data bits degenerate which contradicts the fact that MUX,, depends on all its address and data bits. Thus,
at this point, there exists a substitution that eliminates N/2 + 1 binary gates.

Then, we harness Gate Elimination on a “mass substitution”, that is, we take advantage of the fact that if
a circuit C has ¢ constants with a cumulative of ¢ fan-outs after substitutions, then we can eliminate at least
¢ more binary gates deeper in the circuit (Lemma 4, a useful gate elimination tool established in [CDJ25]).
Thus, with an appropriate substitution to the N/2 data bits that were made irrelevant by a; < b, we can
further eliminate N/2 costly gates in a deeper level of the circuit which yields a total of N + 1 binary gates
eliminated at this point.

Finally, restricting a; <— b results in a circuit computing MUX,,_1, so we can repeat the process above
with a different address bit and construct a recurrence that lower bounds the number of gates eliminated
after each substitution of an address bit.

1.3 Discussion

An obvious open problem is to further improve our lower bound, as close to the upper-bound as possible. A
more ambitious direction is to show that 2N +O(\/N) is a tight bound and that the upper-bound construction
is indeed optimal. However, we believe Gate Elimination alone might be too difficult to tight the bound
further, let alone characterizing optimal circuits for MUX,,. In Appendix B (Section B.3), we provide some
insight on why that is the case and thereby guiding us to investigate other techniques.

2 Preliminaries

2.1 Boolean Circuits

We study general Boolean circuits over the DeMorgan basis B = {A,V,—,0,1} of Boolean functions: binary
A and V, unary — and zero-ary (constants) 1 and 0. Circuits take zero-ary variables in X = {z1,z2,...,z,}
for some fixed n as inputs. The standard formulation of circuits consists of single-sink DAGs with nodes
labeled by function symbols or variables and edges as “wires” between the gates. We write Vo and E¢ to
denote the set of nodes and the set of edges of a circuit C' respectively, omitting the subscript when it is clear
which circuit is being referenced. Boolean circuits compute Boolean functions through substitution followed
by evaluation.

An assignment of input variables is a mapping from the set of inputs to {0,1}. To substitute into a
circuit according to an assignment, each input x; is replaced by the constant. To evaluate a circuit, the
values of interior nodes labeled by function symbols are computed in increasing topological order. For each
interior node labeled by a function, it’s value is obtained by applying it’s function to the value of the node’s
incoming wires. The output of the circuit overall is the value of its sink.

Let F,, be the family of Boolean functions on n variables. We say a circuit G on n variables computes
g € Fp if for all @ € {0,1}", G(a) = g(«). The size of a circuit G, denoted |G|, is the number of A and Vv
gates in the circuit, and C'C(g), the circuit complexity of a Boolean function g, is the minimum size of any
circuit computing g. Since only A and V gates contribute to circuit size. We say a circuit G computing g is
optimal if |G| = CC(g).

2.2 Gate Elimination

Our lower bounds use the classical gate elimination method: we fix some inputs to constants, then repeatedly
simplify the resulting circuit using local Boolean identities until no further simplifications apply. Intuitively,
each simplification either replaces a gate by a constant or merges it into one of its inputs, thereby reducing
the number of costly gates while preserving the computed function on the restricted input space. Table 2
lists the local rewrite rules we use, grouped intocfour types:

e Fizing rules: directly turn a gate into the constant 0 or 1 (e.g. 0 Ay — 0).

e Passing rules: replace a gate by one of its inputs (e.g. 1Ay —), letting that input inherit the outgoing
wires of the gate.

e Resolving rules: eliminate a literal and its negation (e.g. y A =y — 0).

e Pruning rules: remove duplicate inputs (e.g. ¥ Ay —) and double negations.

Fixing Passing Resolving Pruning

OANy—0 1Ay =7 YA—=y—=0 YAy =y
YAO—=0 YAL =y YAy —=0

1vy—1 OVy—7vy YV-y—1 YVy—y
YyV1—=1 YVO0—y yVy—1

-0—1 Ty =y
-1—=0

Table 2: Gate elimination rules

All these rules strictly decrease the number of costly gates and preserve the Boolean function computed
by the circuit. We also use a trivial “garbage collection” step: any gate with fan-out 0 that is not the output
gate may be deleted.Figure 1 illustrates a passing rule: the child gate v takes over the outgoing wires of
and « can be deleted once it has fan-out 0.

«a @
—> ») —>
TOSROINCIE OO IR Ot
Figure 1: An example of applying the passing simplification 1 A« — . Notice that « inherits the fanout
from «, and « can then be garbage collected.

Note that the identifier of a never changes; only its type and incident wires. Depending on the initial
fanout of each gate involved in the pattern, applying a rule could totally disconnect some gate(s) and leave
the circuit in a state that needs garbage collection. We introduce notation for applying sequences of these
steps to circuits, and define composed circuit manipulations that are “well behaved” with respect to specific
circuits.

Definition 1. A simplification is a sequence of gate elimination and garbage collection steps. If A is a
simplification and C' is a circuit, write A(C') to denote the new circuit obtained by applying each step of A to
C' in order. If a single step of A fails to apply in C, then fix A(C') = C so that invalid A for C are idempotent
by convention. A simplification A is called

e terminal for C' if, for every)N that extends A by one additional gate elimination or garbage collection
step, A(C) = X (C), and/or

e layered for C if the depth of binary gates binding to « in each step is non-decreasing.

Simplifications formalize every sequence of circuit-manipulation steps except for substitution. They
change the function computed by a circuit if and only if some input gate is garbage-collected. Simplifications
suffice to impose convenient structural properties on arbitrary circuits.

Definition 2. A circuit C is normalized or in normal form if
1. C is constant-free or C' is a single constant,
2. every gate in C has a path to the output, and
3. no sub-circuit of C matches the left hand side of a gate elimination rule in Table 2.

Any terminal simplification suffices to put a circuit C' in normal form, and it is straightforward to see
that the number of constants in C' lower-bounds the number of eliminated gates. We can even push it
further: every circuit C' can be normalized by a layered simplification, and the number of eliminated gates
is lower-bounded by the cumulative fanout of constants in C' (Lemma 4).

Lastly, we emphasize that substitution always changes the function computed by C, restricting its domain
to a subcube. Additionally, C' remains well-formed after any substitution, because input gates have fan-in
0. However, C is never in normal form immediately after a substitution because it introduces a constant.
So we generalize simplifications by allowing for substitution steps.

Definition 3. A restriction is a sequence of substitution, gate elimination, and garbage collection steps.
Restrictions generalize simplifications, so we extend notation and conventions accordingly: p(C) denotes the
result of applying restriction p to circuit C, and invalid restrictions for C' are idempotent by convention.

The categories of terminal and layered simplifications apply immediately to restrictions, because they
explicitly reference only gate elimination or garbage collection steps. Thus, restrictions are terminal and/or
layered only with respect to how they simplify and not how they substitute. When applying a restriction p
to a Boolean function instead of a circuit, we simply ignore the additional simplification steps (if any).

3 A Better Lower Bound for MUX

For our lower bound for MUX,,, we take advantage of its downward self-reducibility after substituting one
address bit. Such a substitution will make half of the current data bits irrelevant to the resulting circuit
computing MUX,,_;. It is easy to see that MUX depends on all its address and data bits.

Furthermore, the observation that every circuit C can be normalized by a layered simplification, and the
number of eliminated gates is lower-bounded by the cumulative fan-out of constants in C'. This property
is immensely useful for our MUX’s lower bound. The full proof of this property can be found in [CDJ25].
Below, we provide a proof sketch.

Lemma 4 ([CDJ25]). For any circuit C with q constants that have total fanout ¢, there is a terminal and
layered simplification A\ such that A(C) is a single constant or |A\(C)| < |C| —£.

Proof Sketch. We write ¢; as the total fan-out of all constants in C' after applying ¢ rule manipulations, and
1t as the number of binary gates eliminated so far. Note that since a circuit is normalized only when it is a
single constant or when ¢; = 0, it is sufficient to exhibit a terminal layered simplification A such that u; > ¢
if ¢ = 0. We initialize ¢ = ¢ and p; = 0.

Fix an order of the gates in C' by depth (breaking ties arbitrarily). Apply gate elimination rules in
non-decreasing depth order, interleaving garbage collection of gates with fan-out 0. This yields a layered
simplification A by construction.

We compute the changes to fan-out after each of the 4 types of elimination to show that: (i) each rule
application decreases ¢; by 1, (ii) whenever ¢; decreases by 1, at least one binary gate is eliminated, so .
increases by at least 1, and (iii) garbage collection never increases ¢; and only increases ;. If a single gate
remains after \ terminates, then it must be a constant, and we are done. Otherwise, there are no constants
with positive fan-out in the simplified circuit, so ¢; = 0. Since each unit dropped in ¢; forces an increase of
at least 1 in i, and we initialize ¢, = ¢, it follows that p, > ¢ which yields |A(C)| < |C| — ¢ as desired. O

Theorem 5. For the DeMorgan basis {A,V, -} with free =-gates, we have CC(MUX,,) > 2 whenn =1 or
CC(MUX,,) > 2N +log N whenn >1 and N = 2™.

Proof. We exploit the downward self-reducibility of MUX,,: substituting an address bit a;, i € [n], will
eliminate half of the current data bits whose indices are not compatible with the substitution, and the
restricted function is a smaller multiplexer. Thus, our strategy is to establish a lower bound on the number
of gates eliminated under a specific setting of a; as well as the data bits that are eliminated, and we repeat
this strategy for the remaining address bits, one by one to establish a recurrence on the number of gates
eliminated. To this end, let C' be an optimal circuit computing MUX,, for n > 1, and set N = 2". Without
the loss of generality, we focus on a,, the last address bit. Let D be the set of data bits that becomes
degenerate when a,, is set to some binary constant b. It is obvious that |D| = N/2, and for convenience, we
index data bits in D as {z; | j € [N/2]}.

We first claim that there exists a set S of N/2 distinct binary gates such that each gate in S reads a
distinct x; € D. Process each z; € D one by one and select some unseen binary gate arbitrarily from z;’s
out neighbors that has not been selected yet. That is, for z;, choose any binary out-neighbor and put it

into S; for 2, choose any binary out-neighbor not already in S; and so on. If this process fails for some x;,
then all binary out-neighbors of x; are already in S. By appropriately fixing the previously processed data
bits {x1,...,2;_1}, we can then apply fixing rules at each gate in S while leaving x; unconstrained and in
turns disconnecting x; from C. This contradicts the fact that C' depends on every data bit, and thus, such
set S exists.

Now, we argue that a,, feeds to a binary gate that is outside of S. If every binary gate reading a,, is in
S, then by fixing the data bits in D appropriately we could again apply fixing rules at all gates in .S and
thereby disconnect a,, from C, contradicting that MUX,, depends on every address bit. Furthermore, if we
substitute a,, < b and then substitute each x; € D to whichever allows its selected gate to be eliminated
with a fixing rule, then we will eliminate at least N/2+ 1 binary gates. We claim that none of these N/2+ 1
gates is the output gate of C'. Indeed, if one of them were the output, then by choosing the corresponding
input value for a,, or some x; € D appropriately, we could make the entire circuit constant.

Let C” denote the circuit obtained after these substitutions, and let S" = S'U g,,,, where g,, is a binary
gate fed by a,, and g,, ¢ S. Then, each gate in S’ is now a constant with fan-out at least 1, so the constants
in C” have total fan-out of at least |S’| = N/2 4+ 1. By Lemma 4, there is a terminal, layered simplification
of C’ that eliminates at least N/2+ 1 further binary gates. Altogether, fixing a,, and the data bits in D and
then simplifying eliminates at least N/2 + N/2+41 = N + 1 binary gates.

After these substitutions, the simplified circuit computes MUX,,_1 on the remaining address bits and the
remaining half of the data bits. We can further repeat this process for the remaining address bits a; and the
corresponding data bits that they make degenerate and obtain circuit computing smaller multiplexers. In
particular, let CC(MUX,,) = T(N), where N = 2", which denotes the minimum size of an optimal circuit
for MUX,,, then we can lower-bound T'(IV) with the following recurrence.

o) > {2, ifN=2(n=1)
T |T(N/2)+ N+1, ifN>2(n>1)

The base case follows from Paul’s lower bound [Pau75], and the recurring case follows from our analysis. We
have n = log N number of address bits, so we can unroll the recurrence as follows

T(N)>T(N/2)+ N +1
>T(N/4)+ N+ N/2+2
>T

(N/8)+ N+ N/2+ N/4+3

We have
10%715 B Nnill
L 20 L
i=0 =0
1—-(1/2)"
=N (1_(1//2)> (geometric series for r = 1/2)
=N(2-2'"")
=2N -2 (21~ =2/2" = 2/N)
Thus, CC(MUX,) >2+2N — 2 +1log N = 2N + log N as desired. O
References
[AT11] Kazuyuki Amano and Jun Tarui. “A well-mixed function with circuit complexity 5n: Tightness
of the Lachish-Raz-type bounds”. In: Theoretical computer science 412.18 (2011), pp. 1646—

1651.

[CDJ25]
[CO25]

[DK11]

[FGHK16]

[IM02]

[KP80]

[LRO1]

[LY22]

[PauTs)|
[Red73)|
[SCI§]
[Sch74]
[Sto77]
[Weg87]
[Wig93]

[Zwi91]

Marco Carmosino, Ngu Dang, and Tim Jackman. “Simple Circuit Extensions for XOR in
PTIME”. In: arXiv preprint arXiv:2511.16903. To Appear in STACS 2026 (2025).

Bruno Cavalar and Igor Oliveira. “Boolean Circuit Complexity and Two-Dimensional Cover
Problems”. In: ACM Transactions on Computation Theory 17.2 (2025), pp. 1-23.

Evgeny Demenkov and Alexander S. Kulikov. “An Elementary Proof of a 3n - o(n) Lower Bound
on the Circuit Complexity of Affine Dispersers”. In: Mathematical Foundations of Computer Sci-
ence 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011.
Proceedings. Ed. by Filip Murlak and Piotr Sankowski. Vol. 6907. Lecture Notes in Computer
Science. Springer, 2011, pp. 256-265. DOI: 10.1007/978-3-642-22993-0_25. URL: https:
//doi.org/10.1007/978-3-642-22993-0%5C_25.

Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. “A
Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit Function”. In: 2016
IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). 2016, pp. 89-98.
DOI: 10.1109/F0CS.2016.19.

Kazuo Iwama and Hiroki Morizumi. “ An Explicit Lower Bound of 5n - o(n) for Boolean Circuits”.
In: Mathematical Foundations of Computer Science 2002, 27th International Symposium, MFCS
2002, Warsaw, Poland, August 26-30, 2002, Proceedings. Ed. by Krzysztof Diks and Wojciech
Rytter. Vol. 2420. Lecture Notes in Computer Science. Springer, 2002, pp. 353-364. DOI: 10.
1007/3-540-45687-2_29. URL: https://doi.org/10.1007/3-540-45687-2%5C_29.

Klein and Paterson. “Asymptotically optimal circuit for a storage access function”. In: IEEE
Transactions on Computers 100.8 (1980), pp. 737-738.

Oded Lachish and Ran Raz. “Explicit lower bound of 4.5n - o(n) for boolena circuits”. In: Pro-
ceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. STOC *01. Her-
sonissos, Greece: Association for Computing Machinery, 2001, pp. 399-408. 1SBN: 1581133499.
DOI: 10.1145/380752.380832. URL: https://doi.org/10.1145/380752.380832.

Jiatu Li and Tiangi Yang. “3.1n - o(n) circuit lower bounds for explicit functions”. In: STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20
- 24, 2022. Ed. by Stefano Leonardi and Anupam Gupta. ACM, 2022, pp. 1180-1193. poOTI:
10.1145/3519935.3519976. URL: https://doi.org/10.1145/3519935.3519976.

Wolfgang J Paul. “A 2.5 n-lower bound on the combinational complexity of Boolean functions”.
In: Proceedings of the seventh annual ACM symposium on Theory of computing. 1975, pp. 27-36.

NP Red’kin. “Proof of minimality of circuits consisting of functional elements”. In: Systems
Theory Research: Problemy Kibernetiki (1973), pp. 85-103.

JE Savage and Models Of Computation. Ezploring the power of Computing. 1998.

Claus-Peter Schnorr. “Zwei lineare untere Schranken fiir die Komplexitdt Boolescher Funk-
tionen”. In: Computing 13.2 (1974), pp. 155-171. pOI: 10 . 1007 /BF02246615. URL: https :
//doi.org/10.1007/BF02246615.

Larry J. Stockmeyer. “On the Combinational Complexity of Certain Symmetric Boolean Func-
tions”. In: Math. Syst. Theory 10 (1977), pp. 323-336. DOI: 10.1007/BF01683282. URL: https:
//doi.org/10.1007/BF01683282.

Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

Avi Wigderson. “The fusion method for lower bounds in circuit complexity”. In: Combinatorics,
Paul Erdos is Eighty 1.453-468 (1993), p. 68.

Uri Zwick. “A 4n lower bound on the combinational complexity of certain symmetric boolean
functions over the basis of unate dyadic Boolean functions”. In: SIAM Journal on Computing
20.3 (1991), pp. 499-505.

https://doi.org/10.1007/978-3-642-22993-0_25
https://doi.org/10.1007/978-3-642-22993-0%5C_25
https://doi.org/10.1007/978-3-642-22993-0%5C_25
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/3-540-45687-2%5C_29
https://doi.org/10.1145/380752.380832
https://doi.org/10.1145/380752.380832
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1007/BF02246615
https://doi.org/10.1007/BF02246615
https://doi.org/10.1007/BF02246615
https://doi.org/10.1007/BF01683282
https://doi.org/10.1007/BF01683282
https://doi.org/10.1007/BF01683282

A Recounting Paul’s Lower Bound

In this section we will recount Paul’s lower bound for the multiplexing function (MUX) [Pau75]. We note
that Paul’s basis was {A,®,—} (with free —-gates and costly A, @-gates) which is different from our basis.
Still, the core ideas for the argument remain the same, an argument via Gate Elimination. Here, we simply
provide our refined presentation of Paul’s lower bound that aligns with our basis.

To this end, we define the set of i index selector functions as follows

Definition 6. Let f: {0,1}" x {0,1}?" be a Boolean function with two distinguished sets of input variables:
ai,...ay, the set of address bits and x1,...x9n_1 be the set of data bits.

We define A(f) = {a € {0,1}" : fl,—o = T(a)} to be the set of selectable addresses of f.

We define S;, the set of i index selector functions, as:

Si={f {0, 1}" x {0,13*" — {0,1} : |A(f)| > i}

In words, the set S; contains Boolean functions f on (n + 2™) input variables such that there are at least
i addresses a satisfying f(a,z) = x(,). Thus, it is easy to see that when i = 2", we have f = MUX,,. With
this observation, we obtain the following lower bound on MUX.

Theorem 7. [Pau75] For the DeMorgan basis {A\,V,—} where —-gates are for free, and for all f € S;, we
have CC(f) > 2i — 2. Furthermore, CC(MUX,,) > 2N — 2 where N = 2™.

Proof. Let C be an optimal circuit for some f; € S; (as in Definition 6) with ¢ > 1, we proceed with proving
the lower-bound by induction on ¢. The base case ¢+ = 1 is vacuous as 2-1 —2 = 0 and the circuit complexity
of all functions is non-negative.

For i = 2, we wish to show that CC(f2) > 2-2 — 2 = 2 for some f; € So. By Definition 6, there are
two selectable addresses aq, as. By definition, fs is a Boolean function such that there exists at least two
addresses a1, ap € {0,1}¢ such that fo(aq,z) = T(ay) and fo(ao,) = T(q,). Since a; and ay corresponds to
two different data bits, we need at least one A-gate to select the appropriate appropriate data bit and one
V-gate to combine the results of the selection (either one of them). Thus, CC(f2) > 2.

For some ¢ = k > 1, assume that CC(f) > 2k — 2 for any f € Si. Fix fi41 € Skt1, we will show
that CC(fxy1) > 2(k 4+ 1) — 2. To this end, let C' be an optimal circuit computing fr+1. By definition
of Sky1 we know |A(fr41)| > k + 1. Consider any o € A and it’s corresponding input z(,). We analyze
the following cases on the fan-out of x(,) and argue the desired lower-bound for |C| on all cases. First,
we note that fanout(z(,)) cannot be 0. Assume towards contradiction that fanout(x(,)) = 0. Since fi 41
depends on x(4) then x(,) must be the output of the circuit (i.e. fry1 = 2(q) regardless of the value of a).
Since k > 1, |A(fx+1)| > 2 and thus there exists an a’ € A that is distinct from A. However by definition,
Jri1lazar = T(ar) Z Z(a), a contradiction. We now analyze the remaining cases.

e Case 1: fanout(z(y)) > 1. In other words, x(4) is feeds into at least two other costly gates in C. Fix
b € {0,1} and consider C’, the circuit obtained by moving any wires originating from x(4) in C to the
constant b and then performing standard gate elimination. We note that [C’| < |C| — 2 since x(,) had
at least two costly neighbors which would have been eliminated after our constant substitution.

Let f" : {0,1}¢ x {0,1}" be the function C’ computes. Observe that A(f’) = A(f) \ {a}. By
the inductive hypothesis, 2¥ — 2 < CCO(f') < |C'| < |C| — 2 < CC(fr+1) — 2. Rearranging yields
CC(fr41) >2k—2+2=2(k+1)—-2.

e Case 2: fanout(z(,)) = 1. This means that (—)z () is fed into exactly one costly gate in C. Let us call
this costly gate g. We first show that it is not the output of the circuit. If it were, notice that there is
some constant we can substitute in for z(,/) that would eliminate g via a fixing rule and leaving the
circuit constant. In other words, there exists a constant b € {0,1} such that frii[, (ay=b is degenerate
with respect to all z(4/) for any o/ # o and a # o'. However, since |A(fx41)| > 2, there is at least one
other o such that fyi1l,—ar 2= = T(ar) # b

Therefore, g is not the output gate and thus (—)g feeds another costly gate h € {A,V}. Substituting
the constant for z(,) which eliminates g via a fixing rule will then also eliminate h as well. Thus, we
obtain CC(fr+1) = |C| > 2(k + 1) — 2 via the same argument as in case 2.

Since CC(fr41) > 2-2F+1 —2 for both cases, the statement is true by the principle of mathematical induction.
Set i = 2" = N, we obtain CC(MUX,,) > 2N — 2. O

B Best Known Upper Bound Construction

To better understand the construction for MUX-circuits, we define a binary-to-positional decoder, an impor-
tant component in the circuit construction, as follows

Definition 8 (Positional Decoder). A function DEC,, : {0,1}" — {0,1}?" is called a binary-to-positional
decoder if the following holds:
DEC,(a) = (selg(a), ..., selan_1(a))

where sel;(a) =1 iff i = (a)
Thus we can write the definition of MUX as a DNF using the output of DEC,, as follows

2m -1
MUX,, (a,z) = \/ sel;(a) A x;
=0

Furthermore, to simplify analysis and avoid irregularities arising in generic even or odd input lengths,
we define and analyze restricted variants of these functions—Exponent Decoder (eDEC) and Exponent Mul-
tiplexer (eMUX) where the address length is always a power of two. This constraint enables recursive
constructions that are clean, easily analyzable, and asymptotically optimal while remaining representative
of the general case. In particular, we provided a fully formal and expanded version of the upper bound
construction from [KP80] by first analyzing the construction for eDEC (Theorem 11) and then lift that to
eMUX (Theorem 14). Namely,

Definition 9 (Exponent Positional Decoder and Multiplexer). Let £ € N, we define the classes of functions
£
of Exponent Positional Decoders eDEC; : {0, 1}22 —{0,1}?" and Exponent Multiplexers eMUX; : {0, 1}2£ X
£
{0,1}2° = {0,1} as follows

eDEC,(a) = (selo(a), ..., selye (a))
where sel;(a) =1 iff i = (a)
221
eMUX¢(a,x) = \/ seli(a) A x;
=0

Here, notice the subscript of ¢ used in the definition of Binary Positional Decoder and Multiplexer which
no longer indicates the number of input variables. Instead, it serves as an “index” for the function in this
particular family. So for example, eDEC is the first and “smallest” one in the eDEC-function family and it
corresponds to DEC; in the standard decoder family. Similarly, eDEC; is the second one in the family and
corresponds to DEC,, eDECs to DECy, and so on. The same logic applies for the eMUX-function family.

B.1 Decoder Upper-Bound Construction

To begin with, we will look at a naive construction for a circuit computing DEC,,. Observe that for n address
bits, there are 2" = N possible minterms, and each minterm corresponds to exactly one output of DEC,,.
Thus, our circuit construction is to simply compute all possible minterms composed by the address bits
ai,...,a,. To construct a minterm, we need n — 1 = log N — 1 A-gates. Therefore, this construction yields
an upper bound CC(DEC,,) < (log N — 1)N which is O(N log N) costly gates.

However, observe that we can achieve a better upper-bound by constructing the circuit for DEC,, re-
cursively. Namely, we notice that by definition, minterms have a recursive property, i.e. a minterm on n
variables is an AND of 2 smaller minterms, one is on half of the variables, and the other one is on the
other half of the variables. That said, a better way to construct a DEC,-circuit is to use two subcircuits,
DEC|,,/2)-circuit and DEC,, /9-circuit, and combine every minterm generated by the first DEC|,, /5 |-circuit
with every minterm generated by the second DECy,, /o1-circuit with A-gates. We present Figure 2 regarding
this construction in our upper bound proof in Section B.1 below. Thus, this construction yields a circuit
complexity that is at most twice the complexity of DEC,, ;5-circuit plus N A-gates that are used to combine
the minterms of the two DEC-subcircuits.

Lemma 10 ([KP80; SC98]). CC(DEC,) < N + CC(DEC|,/3|) + CC(DEC,/57) = N + O(VN), where
N =2"

Notice that each output entry of DEC,, corresponds to exactly one minterm the variables {a1,as, ..., an}.
Each minterm computes a distinct non-constant function which requires at least one costly gate to compute,
and there are 2" possible minterms. Thus, an obvious lower bound for the circuit complexity of DEC,, is
CC(DEC,) > N [SC98]. However, this lower bound only gives us information regarding the output layer
on the top of the circuit as n gets large which leaves rooms for improvement if one can witness a restriction
that is guaranteed to eliminate gates in the intermediate levels of the circuit.

Below, we present a detailed analysis of the upper bound construction for eDEC. We note that our
construction for the upper bound is based on that of [KP80; SC98], but we provide an exact count of gates
for the case of eDEC.

Theorem 11. Let £ € N and N = 2%, then CC(eDECy) < N + S(N) where S(N) = Zli‘):gllogN_l 2i . N1/2'
Proof. Let r = s = % = 271 then for some a = boc, where b € {0,1}", ¢ € {0,1}*, and i = 0,...,2" — 1,
7 =0,...2° =1, we have

selj.oryj(a) = seljarij(boc) = sel;(b) A selj(c)

which implies the following equation computing eDEC, defined in Definition 9
eDECy(a) = eDECy(bo ¢) = (sel;(b) A selp(c), ..., sel;(b) A selys_1(c) for i =0,...,2" — 1)

In words, for every i = 0,...,2° — 1, we compute sel;(b) A sel;(c) for every j = 0,...,2" — 1, so selyp(a)
corresponds to sel; (b) A sel;(c) where (i,7) = (0,0), and sely (a) corresponds to the term where (7, 5) = (0, 1),
and so on.

We observe the following recursive construction for D, based on the equation above. In particular, let
Dy be the circuit computing eDEC,, then the construction of D, uses two D,_; sub-circuits and the output
of D, are given by connecting the outputs of the two D,_; in the following manner: for each output of one
Dy_1, we connect it to each output of the other D, ; using an A-gate which requires a total of N A-gates.
Thus, we obtain

CC(eDECy) <2-CC(eDECy_1) + N

We can repeat this process to construct D,_; using two sub-circuits Dy_5, and so on which suggests a
recurrence for the construction of eDEC,-circuits. In particular, observe that the base case of the recursive
construction is when ¢ = 0 which is a simple decoder that has 22" = 2 outputs. This decoder requires
zero costly gate since we have only two possible minterms, i.e. either the variable itself or its negation, so
CC(eDECp) = 0. Thus, we can express the upper-bound of CC(eDEC,) via the following recurrence with

N=2" — VN = 22'/2 = 92! (meaning decreasing ¢ by 1 accounts for taking the square root on the

number of outputs)
0 if N =2
T(N)=<{_
() {2~T(N1/2)+N, if N> 2

Now, we compute the number of steps to reach the base case. Let this number be k, then we have

10

1= % — 2F =log N = k =loglog N. Next, we unroll the recurrence for k steps.

—4.T(NY*)+2. N2 4 N
=8 . T(NY/8) 4 4.NV44 2. NV2 4 N

k—1
:2k'T(2)+Z21N1/2l
=0
loglog N—1)
=logN-0+N+ Y 20.NV*
=1
loglog N—1)
=N+ > 2.NY*

i=1
Setting S(N) = Y188 V=1 2i . N1/2' we have CC(eDEC,) < N + S(N) as desired. O

Remark 12. Our upper bound for eDEC, is consistent with the lower bound of DEC,, in Lemma 10. In
particular, the first term in S(N), 2 - N2 dominates the others, and thus, we believe one can show that
S(N) = O(V/'N). Furthermore, a useful thing to try is to derive the exact count for the general case of DEC,,
where n is even or odd, each may differ by a few gates, but should be in O(v/N) still.

sely sely sely sely sely sels selg sel; selg sely selio selin selyy selis selys selis

ololololofolololololatotolotolo

—ao —ay ago ay —asg —as a2 az

Figure 2: The figure shows the consltruction of DEC, that uses two DECs subcircuits. The total complexity
of this construction is 16 + 2 - 161/2" = 16 + 8 = 24 costly gates. For readability, we simplify the negations
of the input variables by treating each negation as its own input node.

B.2 Multiplexer Upper-Bound Construction

We begin with establishing an upper bound for MUX,,, and we start with the naive circuit construction. In
particular, the construction follows from the alternative definition of MUX,, via Definition 8 of DEC,,. As a

11

reminder,
2" -1

MUX,,(a,z) = \/ seli(a) A x;
i=0

In particular, it uses a total of N — 1 V-gates and N A-gates, where N = 2" (see Figure 3). Thus,
CC(MUX,) < 2N — 1+ CC(DEC,) < 3N + O(V/N).

To
LA
selp
1
sely -/\
apg —— T2
S LA
al sely

DEC,, \V MUX, (a, =)
A1 ’ ’
Ton _g
Zon _q
upper-bound construction of DEC,, N parallel ANDs N —1 ORs
Figure 3: Naive MUX,-circuit construction (on input address bits aq, ..., a,—1 and data bits zg, ..., 2Zan_1).
The decoder DEC,, (on inputs ag, . ..,a,—1) emits a one-hot vector (sely, sely, ..., selan_1). Each x; and sel;

are fed into an AND-gate, and the results are combined by an OR-circuit to produce the final output.

The “overhead” of this construction is upper bounded by 2N — 1, but it turns out that we can also apply
a recursive construction for MUX,, to obtain a better upper bound for the overhead. A better construction
proposed by Klein and Paterson [KP80] takes advantage of the downward self-reducibility of MUX. In
particular, the “overhead” of N costly gates can be reduced by using two smaller decoders in sequence,
selecting part of the address with respect to different blocks of arguments in turn (see Figure 4). Namely,
we have the following upper bound

Lemma 13 ([KP80]). CC(MUX,) < 2N + O(vV/N), where N = 2"

Proof. Let r = [5], s = [§], and let D,, D, denote the circuits computing DEC,., DEC, respectively. We

have the following sequence of equations that uses D, and D, in sequence.

27 —12°-1
MUX,, (a,z) = MUX, (boc,z) = \/ \/ (sel;(b) A selj(c) A xiorys)
i=0 j=0
271 2°—1
= \/ seli(b) A \/ (selj(c) A xioryj)
=0 §=0
2°—1
= MUX, | b, \/ (selj(c) ANxjoryj) ,fori=0,---,2" -1
7=0

The circuit construction in this case is as follows (which is suggested by the middle equation): we first
use D; to select the appropriate j given by its binary presentation c¢. Then, for this “fixed” j, the term
sel;(c) A x;.or4; can “filter out” the input indices that do not correspond to j. In other words, at this stage,
we are asking the question: for all possible prefixes b € {0,1}", what is the only correct suffix ¢? Thus, the
output of this stage is the remaining 21"/2! data variables z’s whose suffix of the its index in binary is the
string c. That said, we can ignore the inputs that do not meet this condition and proceed with selecting the
other half b. Finally, we use D,. to select the other half b and the expression b+ 2" - ¢ yields the correct index.
Thus, we obtain a recursive computation of MUX,, in terms of MUX,. as suggested by the last equation.
We will now analyze the circuit complexity of this construction. In particular,

12

e the first stage of selecting the suffix ¢ for the data bit’s index in binary requires 2" - 2° = 2" A-gates
and 27(2° — 1) = 2" — 2" V-gates. Specifically, there are 2" possible prefixes b € {0,1}", and for each b,
we use 2° A-gates and 2° — 1 V-gates to select the correct c. Taking the complexity of Dy into account
(i.e. CC(DEC,)), the total number of gates used in this stage is

CC(DECy) 4+ 2-2" =27
e the second stage of selecting the prefix b for the data bit’s index in binary, given a “fixed” suffix ¢

requires 2" A-gates and 2" — 1 V-gates. Taking the complexity of D, into account (i.e. CC(DEC,)),
the total number of gates used in this stage is

CC(DEC,) +2-2" -1
Note that the construction of this stage is exactly like the naive approach but for MUX,..

Therefore, by Lemma 10 and substituting N = 2" and r = |n/2], s = [n/2], the total complexity of this
construction is upper bounded by

CC(MUX,) < CC(DEC,) + CC(DEC,) +2-2" + 2" — 1 = 2N + O(VN)

O
{2gns2)} T
selo(c) /\
{m()71,/2—1 1 }
co (a=boc)
e — N L MUX(a,)
DEC,./» sely (c)
sela(c) —
Cn/2—-1 —
{b;i|i=0,1,
{11n/2 *}
Selzn/271(9> Naive MUX,, /2 construction
upper-bound construction of DEC,, /o VN parallel AND-blocks V' N parallel OR-trees

each has parallel vV N AND-gates each tree has vV N — 1 OR-gates

Figure 4: One-level expansion of MUX,,. The construction of MUX,, /o-circuit on the right side follows the
naive construction as in Figure 3.

The same analysis can be used to show an upper bound for eMUX, with an exact count rather than bigO.
In particular, apply the upper bound in Theorem 11 for eDEC;_; , we obtain
CC(eMUX;) < 2N + VN — 1+ 2. CC(eDEC,_,)
=2N + VN -1+ 2(VN + S(VN))

loglog vVN—1)
=2N+3VN+2-S(VN)-1, where S(WVN)= > 20 (VN)'/*

=1

which is consistent with [KP80]. However, Klein and Patterson pointed out that the analysis of Lemma 13
suggests a recursive construction which can give further improvement to the O(v/N) term, and in particular,
decrease the coefficient of the term v N for eMUX,.

13

The analysis in Lemma 13 suggests a recursive construction for the circuit which can yield an improvement
for the 3v/ N term. In particular, we notice that we can split the string b into two halves and continue
“filtering” the remaining variables and repeat the process. With this observation, we establish the following
upper bound for eMUX,.

Theorem 14. Let { € N, CC(eMUX,) < 2N +S(N)+3, where N = 22, and S(N) = Y188 N =1 9i. N1/2!

i=1

Proof. Let r = s = 2°/2. We apply one more iteration of the recursive construction and observe the
improvement. In particular, we expand the expression for eMUX; similar to Lemma 13 further by splitting
b into by and ¢; where each has length r/2 = 2¢/4, then use two subcircuits computing eDEC,_», one to fix
c1 and the other to process by accordingly.

eMUX¢(a, x) = eMUXy(by 0 ¢1 0 co,)
2m/2_12m/212°-1

\/ \/ \/ (seli(br) A selj(cr) A selj(co) A @jaryjor2iy)

=0 j=0 k=0

or/2_1 or/2_q 2°—1
\/ seli(by) A \/ <selj (c1) A < \/ (selk(co) A xi.2T+j,2r/2+k)>>

i=0 7=0 k=0

2m/2 1 2°—1
=eMUX;_s | b1, \/ (selj(cl) A (\/ (selr(co) A Zjgryjors2iy) , fori=0,..., or/2 _ 1))

§=0 k=0
We will now analyze the circuit complexity of this construction. In particular,
e The first stage of fixing ¢ is the same as the analysis in Lemma 13 which requires

CC(eDEC,) +2-2% — 22/

e The second stage of selecting the ¢;-part for the index requires 2¢/2 A-gates and 27/2(27/2 — 1) V-gates
since this stage goes through all 2¢/2 indices to select the ¢;-part and combine. Taking C'C(eDEC,_5)
into account, the total number of gates used in this stage is

CC(eDECy_s) + 2277 +22% (22" _ 1) = CC(eDEC,_y) + 2 - 22" — 22"

e The third stage of selecting the b;-part for the index, given fixed ¢, ¢;-parts requires 2¢/4 A-gates and
2¢/4 — 1 v-gates. Taking the complexity CC(eDEC,_5), the total number of gates used in this stage is

CC(eDEC,_5) +2-22"" —1

Substituting N = 22" and apply Theorem 11 for CC(eDEC,_;) and CC(eDECy_3), we obtain

CC(eMUX;) < CC(eDEC,_1) +2- 22 — 22 4+ CC(eDEC,_5) +2- 227" — 22" 4 CC(eDEC,_o) +2- 227" —1
=292 42277 4+ 92" 4 CC(eDEC,_1) + 2 CC(eDEC,_s) — 1
< 2N + NY2 4 NVA L NV2 L S(NV?) 4 oNY4 4 2. S(NV4) — 1
— 2N +2NY2 4 3NVA L S(NY?) 4 2. S(NV4 —1

where S(M) = Ziozgllog M=19i pr1/2", We can repeat the process for £ = loglog N times and express the
upper bound of CC(eMUX,) as the following recurrence

3 if N =2
T(N)=3""
() {T(N1/2) +2N +S(NV?), if N >2

14

For the base case N = 2 (i.e. £ =0), we have eMUX(which is equivalent to multiplexing 2 data bits x, 2.
We can construct the circuit by using a eDECq-circuit which requires zero costly gate because it is simply
the input variable itself (ag) or its negation (@g). Then, we construct @y A xg, ag A 1 and combine their
results with an V-gate which yields a total of 3 costly gates.

m

Figure 5: A circuit computing eMUX;
Justification for the case of N > 2 is based on the analysis of performing one recursive step as in Lemma
13 as shown below

CC(eMUX,) < CC(eDEC,_;) + (2N — V'N) +CC(eMUXy_1)

selecting data bits based on an address slice stage

< VN + S(VN) +(2N — VN) + CC(eMUX,_1)
S —— S —
apply Theorem 11 for CC(eDEC,_1) T(N1/2)

= 2N 4+ S(N'?) + T(N'/?) = T(N)
Now we unroll the recurrence for loglog N steps (until the data bits domain shrink to the base case)

T(N)=T(NY?) + 2N + S(N'/?)
T(NY4) 4+ 2NY2 £ S(NY4) 4+ 2N + S(NY/?)
= T(NY®) 4 aNV4 £ S(NV/B) 4 2NV2 + S(NV4) 4 2N + S(N'/?)

loglog N—1
i i41
=T2)+ Y. @NYF 1SV
=0
loglog N—1
i i1
=3+ > @NYZ LSV
=0

Note that we can simplify the expression further by simplifying Zlog s N=Lon1/2" 4 §(N1/2™)) In
particular, for each i, we expand S(NV/2™"") = ZzogllogN =2 9i NY/2" For readability, set L = loglog N,
then, we have

L—-1 L—-1L—i—2
St vty = S s S5
1=0 =0 j=1

The index of the inner sum runs up to L — 1 — 2 because by definition S(M) = Ziogllog M=1oi. M1/2' | then

for M = N2 we have loglogM —1 =1L — (i+1)—1=L—i—2.

15

Re-index the double sum with ©w = ¢4 j + 1, then since j > 1, we haveu —1 -1 > 1 <= i < u— 2.
Thus,

L-1L—i-2 . L-lu-—2
E E o N1/27 T _ Z Z gu—i—1pr1/2"
i=0 j=1 u=1 i=0

Rename the index of the single sum with u and factor out the first term of the sum, we have

L1 ‘ L1
D Nt =N+) aNt

=0 u=1
Putting everything together, we have
L—-1L—i—2 » L—1u—2
Z aNVZ 137 N7 2INY2TT —oN 4 Z aNT/2T 4 NN gumi N2

=1 i=1 u=1 i=0

L-1 u—2
=2N+ > <2 +y° 2“—1—1> N1/

u=1 =0

Finally, we evaluate 2 + Z?:_[? 2u—i=1 t5 determine the coefficient of N'/2”. To this end, re-index the sum
with k =u —14i— 1, and since i =0,1,...,u — 2, we have k =u —1,u — 2,...,1. In other words,

— , « 2(2v "t -1
24 Z Uil =9 ¢ Z 2k =24 % = 2" (apply geometric series formula)

Thus, substitute L = loglog N and S(N) = Y18/ V" 2i . N1/2'we obtain the desired upper bound

loglog N—1
T(N)=3+2N+ Y 2'N'Y*" =2N4+S8(N)+3

u=1
O

If we unroll the first few terms in the sum S(N), we get 2N +2v/N+O(v/N) which is a slight improvement
over Lemma 13 which is 2N + 3v/N + O(W)

Remark 15. We think it can be beneficial for gaining a better understanding on how MUX,, works for general
cases where n is either even or odd by getting an exact count of the upper bound for those cases. We think
each may differ by a few gates, but the general form of the upper bound should still be 2N +2v/N + O(+/N).

B.3 Future Directions

An obvious interesting research direction is to show that the bounds of MUX are tight and that the recursive
construction of MUX as in Theorem 14 is optimal. This will be beneficial to show that MUX is a potential
candidate for proving ETH-hardness of MCSP as discussed in [CDJ25]. This work was successful in showing
the optimal circuit structures compuing XOR,, which is a “tree” of (n — 1) XORy-sub-circuits via Gate
Elimination alone. The key idea is to argue a particular shape at the bottom level of the circuit via an
intricate case analysis to show that any deviation from the target shape will violate the tight bound of XOR.
The XOR-function is well-behaved enough that we can feasibly exhaust all the cases, but this approach is
a major challenge for MUX because we will need to argue that the decoder DEC is a “must have” which
remains elusive to us using Gate Elimination alone. This observation motivates us to look at other circuit
lower bound techniques to gain more insight on MUX, one of which is the Fusion Method which yields a
lower bound on the AND-complexity of circuits in Negation Normal Forms (NNF). Even though we consider
generic circuits throughout this work, we note that the provided upper bound constructions for DEC and
MUX are already in NNF, and gaining some knowledge about MUX in the NNF world is interesting and
significant enough towards understanding the behavior of this function.

16

As surveyed by Wigderson [Wig93|, the Fusion Method turns the computation into a static cover problem
over a set of “fusing functionals.” By choosing functionals tailored to the address/data separation in MUX,,
it may be possible to prove that small covers are impossible and thereby derive new bounds. Recently,
Calavar and Oliveira recast Fusion Method using a modern set-theoretic language that works for various
settings including non-monotone Boolean circuits [CO25]. They mention that reproving known circuit lower
bounds via Gate Elimination, or better yet improving these lower bounds, for non-monotone functions using
their framework remains an open problem.

Intuition on proving Lower Bound via Fusion Method. Informally speaking, the fusion method
asks a simple question: if a circuit for f were really small, could we “mix and match” pieces of many true
examples to accidentally accept a false one? Think of each input bit (or its negation) as a basic condition,
and think of an AND as saying “you must satisfy all these conditions at once.” A small circuit would impose
only a few such “all-at-once” requirements. Fusion formalizes a tester that collects all conditions satisfied by
a known true input and tries to keep combining them in the specific ways the small circuit would—hoping
to land on a contradiction when we apply them to a false input. Our job, then, is to specify a short checklist
of required combinations (or a cover) that forces any such attempt to end in a contradiction. The size of
the smallest checklist tells you how many ANDs you truly need. In short, if every “mix and match” plan
with too few AND-steps breaks, the circuit must use more AND gates—giving the lower bound. Thus,
the minimal cover size exactly measures the AND cost needed to compute f. In this way, fusion cleanly
yields DeMorgan circuit lower bounds by showing that any attempt to compute f with too few AND-gates
is inevitably incorrect on certain inputs.

Circuits Model in Negation Normal Forms (NNF') as Set Theoretic. We briefly explain circuits in
NNF and its cover complexity in a high level idea. Imagine every string « € {0,1}"™ as a point in a universe
of all length-n strings I'. Each literal (a variable or its negation) denotes a “region” in that universe, i.e.
x; is the region of strings where the i*"-bit of is 1, and Z; is the complementary region, i.e. strings where
the *"-bit is 0. In negation normal form (NNF), every internal gate is either an AND-gate or an OR-gate,
and we read those gates as pure set operations, i.e. an AND-gate corresponds to set intersection (N) and
an OR-gate corresponds to set union (U). This means that an AND-gate keeps the overlap of two regions,
whereas an OR-gate takes the combined regions.

We evaluate the circuit from the leaf-level upward, and as proceed, we construct the regions defined by
the internal gates, step by step, and the region defined by the output gate is exactly the set A of length-n
strings where the circuit evaluate to 1. Thus, counting gates now matches counting operations: each AND
is one intersection, each OR is one union, and total circuit size is the total number of these set operations
used to assemble A from the literals.

Then, for a high level idea, a cover preserves some properties and conditions on the computation of the
circuit expressed as set-theoretic, and a cover complerity is a measurement on the size of the “checklist” of
required combinations/conditions. Calaver and Oliveira proved that the number of intersections required is
“sandwiched” between the cover complexity and its square.

Theorem 16. (Informal of Theorem 22 and 24 of [CO25]) Let D denote the intersection complezity of a
Boolean circuit expressed in set theoretic, and let p denote its cover complexity, then p < Dn < p?.

Potential next steps towards this direction. Even though what we have learned so far about Fusion
Method applies for DeMorgan circuits in NNF, rather than generic DeMorgan circuits, it is reasonable to
think that this approach is helpful for gaining more knowledge on the lower bound of DEC and MUX for
various reasons.

e Under the NNF restriction, we can observe that the construction shows in Figure 2 is the only option
for the upper-bound construction for DEC in the NNF world since we cannot have negations in the
middle of the circuit. This construction shows a layer of AND-gates only which is compatible with how
Fusion Method is useful for determining the AND-complexity (i.e. the lower bound on the number of
AND-gates). Thus, if we can extend the framework in [CO25] for multi-output functions, then it is
reasonable to believe that DEC-circuits in NNF must use many AND-gates and thus a tighter bound.

17

e Along this line, we observe that the full recursive upper bound construction for MUX-circuits as pro-
posed in Theorem 14 is already in NNF assuming the NNF construction of DEC-circuits. Looking
further in the construction, we observe that it mainly uses AND-gates as when we shrink the overhead
to just MUX; in this full recursive construction. Thus, it is also reasonable to believe that Fusion
Method can help us show that the AND-complexity of MUX in NNF is high. It is plausible to believe
that by analyzing and knowing the exact AND-complexity of MUX, we can gain more knowledge on
how these AND-gates must be used structurally so that it does not violate the bounds.

18

	Introduction
	Overview
	Our Technique
	Discussion

	Preliminaries
	Boolean Circuits
	Gate Elimination

	A Better Lower Bound for MUX
	Recounting Paul's Lower Bound
	Best Known Upper Bound Construction
	Decoder Upper-Bound Construction
	Multiplexer Upper-Bound Construction
	Future Directions

